• Title/Summary/Keyword: Firing Accuracy

Search Result 43, Processing Time 0.023 seconds

Implementation of pressure monitoring system(PMS) for ship's engine performance analysis(SEPA) based on the web (웹기반 선박엔진 성능분석용 압력모니터링 시스템 구현)

  • Yang, Hyun-Suk;Kwon, Hyuk-Joo;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.929-935
    • /
    • 2014
  • This paper is study on the pressure monitoring system(PMS) for ship's engine performance analysis( SEPA) based on web, with high speed and accuracy. This system is composed of pressure sensor, monitoring module with multi channel A/D converter, TCP/IP and satellite internet communication system. Existing domestic products measure cylinder pressure when piston of first explosive cylinder reached TDC(the top dead center) point and then measure next cylinder pressure manually each angle divided by a constant rotating interval. But presented system monitors in the local and web computer, using pressure information transmitted from pressure sensor installed on each engine. In this system, it is possible to increase the accuracy of the engine performance analysis because not only each TDC points but cylinder pressures synchronized with the TDC points could be measured in real time, accurately. And therefore, it may be used in a various diagnosis of main engines, such as deviations of each cylinder maximum pressures(Pmax) and the TDC firing positions and combustion conditions.

Effect of Kinetic Degrees of Freedom of the Fingers on the Task Performance during Force Production and Release: Archery Shooting-like Action

  • Kim, Kitae;Xu, Dayuan;Park, Jaebum
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.117-124
    • /
    • 2017
  • Objective: The purpose of this study was to examine the effect of changes in degrees of freedom of the fingers (i.e., the number of the fingers involved in tasks) on the task performance during force production and releasing task. Method: Eight right-handed young men (age: $29.63{\pm}3.02yr$, height: $1.73{\pm}0.04m$, weight: $70.25{\pm}9.05kg$) participated in this study. The subjects were required to press the transducers with three combinations of fingers, including the index-middle (IM), index-middle-ring (IMR), and index-middle-ring-little (IMRL). During the trials, they were instructed to maintain a steady-state level of both normal and tangential forces within the first 5 sec. After the first 5 sec, the subjects were instructed to release the fingers on the transducers as quickly as possible at a self-selected manner within the next 5 sec, resulting in zero force at the end. Customized MATLAB codes (MathWorks Inc., Natick, MA, USA) were written for data analysis. The following variables were quantified: 1) finger force sharing pattern, 2) root mean square error (RMSE) of force to the target force in three axes at the aiming phase, 3) the time duration of the release phase (release time), and 4) the accuracy and precision indexes of the virtual firing position. Results: The RMSE was decreased with the number of fingers increased in both normal and tangential forces at the steady-state phase. The precision index was smaller (more precise) in the IMR condition than in the IM condition, while no significant difference in the accuracy index was observed between the conditions. In addition, no significant difference in release time was found between the conditions. Conclusion: The study provides evidence that the increased number of fingers resulted in better error compensation at the aiming phase and performed a more constant shooting (i.e., smaller precision index). However, the increased number of fingers did not affect the release time, which may influence the consistency of terminal performance. Thus, the number of fingers led to positive results for the current task.

THE FIT OF ZIRCONIA FORE FABRICATED WITH CAD/CAM SYSTEM (CAD/CAM system으로 제작한 zirconia core의 적합도)

  • Seong Ji-Yun;Jeon Young-Chan;Jeong Chang-Mo;Lim Jang-Seop
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.5
    • /
    • pp.489-500
    • /
    • 2004
  • Statement of problem: The use of zirconia prostheses fabricated with CAD/CAM system is on an increasing trend in dentistry. However, evaluation of the fit related to internal relief and marginal reproducibility of zirconia has not been reported. Purpose : This study was to evaluate the fit related to internal relief and marginal reproducibility of zirconia core fabricated with CAD/CAM system. Materials and methods: The evaluation was based on 30 zirconia cores and 5 IPS-Empress2 cores. Zirconia cores were fabricated in different conditions of internal relief(0, 10, 20, 30, 40 and $50{\mu}m$), and IPS-Empress2 cores were fabricated in accordance with the manufacturer's instructions. Before cementation, the marginal discrepancies or cores were measured on metal die. And then, each core was cemented to stone die, embedded in an acrylic resin and sectioned in two planes(mesiodistally and labiopalatally). The internal gaps were measured at the margin and axial surface. Measurements for the marginal discrepancies, the internal marginal gaps and the internal axial gaps were performed under a measuring microscope(Compact measuring microscope STM5; Olympus, Japan) at a magnification of ${\times}100$. In addition, the marginal conagurations of metal die, zirconia core and IPS-Empress2 core were examined with SEM(S-2700, Hitachi, Japan). Results : Within the limits of this study the results were as follows. 1. Compared with IPS-Empress2 cores, the marginal discrepancies of zirconia cores had no significant differences. the internal marginal gaps were statistically smaller and the internal axial gaps were statistically larger in each condition of internal relief. 2. The marginal discrepancies and the internal marginal gaps of zirconia cores had no significant differences related to the conditions of internal relief(P>0.05). 3. The internal axial gaps of zirconia cores with $0{\sim}20{\mu}$m for internal relief were significantly larger than that with $50{\mu}m$ (P<(0.0001). 4. SEM micrographs showed favorable marginal reproducibility of zirconia core and smooth texture on the milling surface. Conclusion: The marginal discrepancy and the internal gaps of zirconia core were clinically acceptable and the milling surface was showed smooth texture. For fabrication of the durable esthetic restoration, further investigations on complex design of core, milling accuracy, compatability of enamel porcelain and porcelain firing seems to be needed.