• Title/Summary/Keyword: Fire-protection method

Search Result 336, Processing Time 0.031 seconds

A Study on How to Strengthen the Expertise of Korean Qualifications Management in the Firefighting Realm from the Viewpoint of External Signal Dependency of Capture Theory

  • Kong, Ha-Sung;Lee, Min-Hi
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.46-51
    • /
    • 2019
  • This study suggests ways to strengthen the expertise by analyzing the problems caused by the lack of expertise of the qualification management body managing the Korean qualifications in the realm of firefighting from the perspective of external signal dependency of capture theory. As a method to prevent the dependency of external signals in capture theory, it is suggested to strengthen the expertise of regulators and strengthening roles and functions of regulator institutions by supplementing education and professional manpower. On this basis, analyzing the problems of qualifications management to the external signal dependency tendency, the researchers in qualification management at the Human Resources Development Service of Korea have a variety of different majors, so understanding and application can be limited if they are working in an unfamiliar area of work. Therefore, in making decisions regarding topics such as policies and roles, suitable alternatives should be found based on external signals. In order to improve this, it is necessary to select firefighting majors in the Korean qualification management of the firefighting realm, to reorganize the job scope to a similar job field of the researcher in charge. It is also necessary to strengthen the expertise of the researcher through various programs, such as mandatory periodic maintenance education in order to understand the work of the researcher.

A study of high-efficiency rotating condensing hybrid solar LED street light module system (고효율 회전 집광형 하이브리드 태양광 LED 가로등 모듈 시스템 연구)

  • Min, Kyung-Ho;Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.50-55
    • /
    • 2021
  • Solar power generation, which is one of the methods of using solar energy, has a high possibility of practical implementation compared to other renewable energy power generation, and it has the characteristic that it can generate as much power as needed in necessary places. In addition, maintenance is easy, unmanned operation is possible, and power management can be performed more efficiently if operated in a hybrid method with existing electric energy. Therefore, in this study, numerical analysis using a computer program was performed to analyze the efficient operation and performance improvement of solar energy of the rotating condensing type solar LED street lamp. As a result, the two-axis tracking type could obtain 15.23 % more electricity per year than the fixed type, and additional auxiliary power generation was required for the fixed type by 19 % per year than the tracking type. As a result of computational fluid dynamics(CFD) simulation for PV module surface temperature prediction, the The surface temperature of the Photovoltaics(PV) module incident surface was predicted to be about 10℃ higher than that of the fixed type.

EMC/LVD Compatibility Evaluation of ITER AC/DC Converter Subrack by EN 61000 and IEC 61010 (ITER AC/DC Converter 서브랙의 EN 61000 및 IEC 61010에 의한 EMC/LVD 시험평가)

  • Shin, Hyun-Kook;Oh, Jong-Seok;Song, In-Ho;Suh, Jae-Hak;Choi, Jung-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.222-226
    • /
    • 2021
  • To comply with CE marking requirements, the electromagnetic compatibility (EMC) and low-voltage directive (LVD) tests are conducted on the sub-racks of International Thermonuclear Experimental Reactor (ITER) AC/DC converters and bypass switches. The EMC tests consist of a series of tests, including the electromagnetic interference test, the electromagnetic field immunity test, and the rapid transient burst immunity test. In the LVD test, the electric shock protection test, the xcessive temperature limit and heat resistance of equipment tests, and the fire spread prevention test are performed. This work presents and reviews the European Directive for EMC/LVD and introduces the methods of EMC and LVD tests for the sub-racks of AC/DC converters and bypass switches. It also evaluates the test method and results to meet the European Directive requirements for CE marking. The sub-racks of ITER AC/DC converters and bypass switches successfully pass the EMC and LVD tests.

Optimization Design of Solar Water Heating System based on Economic Evaluation Criterion using a Genetic Algorithm (유전알고리즘 이용 경제적 평가기준에 따른 태양열급탕시스템 최적화 설계에 관한 연구)

  • Choi, Doosung;Ko, Myeongjin;Park, Kwang-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.73-89
    • /
    • 2016
  • To assure maximum economic benefits and the energy performance of solar water heating systems, the proper sizing of components and operating conditions need to be optimized. In recent years, a number of studies to design optimally solar water heating systems have been tried. This paper presents a design method for optimizing the various capacity-related and installation-related design variables based on life cycle cost using a genetic algorithm. The design variables considered in this study included the types and numbers of solar collector and auxiliary heaters; the types of storage tanks and heat exchangers; the solar collector slope; mass flow rates of the fluid on the hot and cold sides. The suggested method was applied for optimizing a solar water heating system for an elementary school in Seoul, South Korea. In addition, the effectiveness of the proposed optimization method was assessed by analyzing the obtained optimal solutions of six case studies, each of which was simulated with different solar fractions. It is observed that a trade-off between the equipment cost and the energy cost results in an optimal design that yields the lowest life cycle cost. Therefore, it could be helpful to apply the optimal solar water heating system by comparing the various design solutions obtained by using the optimization method instead of the engineer's experience and intuition.

Risk Assessment of Smoke Generated During Combustion for Some Wood (일부 목재의 연소 시 발생되는 연기의 위험성 평가)

  • Chung, Yeong-Jin;Jin, Eui
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.373-380
    • /
    • 2022
  • In this study, Chung's equations 1, 2, and 3 were extended to standardize smoke safety rating evaluation in case of fire, and Chung's equations-V, smoke performance index-V, and smoke growth index-V were calculated. Five types of wood were selected and their smoke indices were measured using the cone calorimeter method according to ISO 5660-1. The smoke risk was graded by the smoke risk index-VI according to Chung's equation-VI. Smoke risk index-VI increased in the order of PMMA (1) ≈ maple (1.01) < ash (1.57) < needle fir (4.98) < paulownia (46.15) < western red cedar (106.26). It was predicted that maple and ash had the lowest smoke risk, and paulownia and western red cedar had the highest. The five samples' CO mean production rate (COPmean) was 0.0009~0.0024 g/s, indicating that these woods were incompletely burned than the polymethyl methacrylate (PMMA) reference material. Regarding the smoke properties of the chosen woods, the smoke performance index-V (SPI-V) increased as the bulk density increased, and the smoke risk index-VI (SRI-VI) decreased.

A Study on Measurements of Autoignition and Activation Energy of Superabsorbent Polymers (고흡수성 중합체의 자연발화와 활성화에너지 측정에 관한 연구)

  • Jong-Man Heo;Jae-Wook Choi
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.292-304
    • /
    • 2023
  • Purpose: This study was conducted to obtain experimental data for the establishment of preventive measures against fire, as large and small fire accidents occur at production and storage sites of superabsorbent polymers developed for the convenience of daily life. Method: The sample container was fixed at 0.2m in both length and width, and was shaped into a rectangular cuboid with heights of 3cm, 5cm, 7cm, and 14cm to access an infinite flat plane. The sample container was fixed in the center of a thermostatic bath that was heated to a predetermined temperature according to a preset temperature control program. If the central temperature of the sample rose more than 20℃ above the set temperature, it was determined to have 'ignited', and if it remained similar to the set temperature, it was determined to have 'unignited'. Result: The critical autoignition temperature was calculated to be 212.5℃ for a sample container with a height of 3cm, 202.5℃ for 5cm, 192.5℃ for 7cm, and 177.5℃ for 14cm. The ignition induction time to reach the highest temperature was approximately 42hours for 3cm, 91hours for 5cm, 151hours for 7cm, and 300hours for 14cm. Conclusion:① As the size of the sample container increased, the autoignition temperature decreased and the ignition induction time to reach the highest temperature increased. ② The apparent activation energy was calculated to be 39.30kcal/mol, with a correlation of 99.5%.

A Study on the Plastic deformation Absorption Characteristics of Aluminum-Polyethylene Composite Structure Sprinkler Pipe (알루미늄 합성수지 복합 구조 스프링클러 파이프의 변위 흡수 특성 연구)

  • Kim, Jun-Gon;Kim, Kwang-Beom;Noh, Sung-Yeo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.426-433
    • /
    • 2019
  • After an earthquake, fire and gas explosions are more likely to cause more casualties in cities with many apartment buildings and large complex buildings. In order to prevent this, seismic design is necessary for the fire protection sprinkler system. However, most systems currently use stainless-steel pipes, although synthetic resin pipes are used in some special places. These materials are susceptible to vibration and earthquakes. This study evaluated the displacement absorption flexibility of polyethylene (PE) and aluminum (Al) multi-layered composite pipes to increase the seismic performance in a vibration environment and during earthquakes. The seismic performance was compared with that of a stainless-steel and PE pipes. The seismic characteristics can be measured by measuring the amount and extent of vibration transmitted by the sprinkler pipe. This method can be used to judge the seismic characteristics to attenuate the vibration during an earthquake. The seismic characteristics of the pipe were verified by comparing the logarithmic attenuation rate to the initial response displacement of the vibration generated by the transverse vibration measurement method.

A Study on the Calculation and Application of the Risk in the Hydrogen Stations (수소충전소의 위험도 산출 및 적용에 대한 고찰)

  • Seo, Doo-Hyoun;Kim, Tae-Hun;Rhi, Kwang-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.1-9
    • /
    • 2020
  • In Korea, hydrogen stations are being promoted and commercialized. However, the risk assessment for the hydrogen station is not clear. In particular, it is not clear how to calculate the risk and acceptable criteria for a hydrogen station. Therefore, in this study, three hydrogen stations being installed were selected and general risks were calculated and the social risk of each hydrogen station was calculated. In general, the method of risk assessment is individual/social risk. This is an individual's death rate considering the frequency of accidents, And the likelihood of death according to the number of nearby residents. These can be used to calculate the level of risk for a hydrogen station. However, this method of calculate risks is the criteria for judging whether it is acceptable are unclear. For this reason, this study investigated the allowable standards for foreign risks and considered that they were acceptable by applying the risks of selected domestic hydrogen stations.

A Study on The Evaluation Criteria of Carbon Emission and the Development of the Evaluation Method in Apartment House (공동주택을 대상으로 한 탄소배출 평가기준 구축 및 평가방법 개발)

  • Choi, Doo-Sung;Chun, Hung-Chan
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.79-88
    • /
    • 2013
  • This study creates the evaluation criteria to analyze the $CO_2$ emission quantity in the complex of apartment house among domestic buildings and proposes how to calculate the $CO_2$ emission quantity by the only simple information of apartment house. The study shows that in order to create the index of carbon emission evaluation criteria, $CO_2$ emission quantity for its input materials in these 27 apartment houses are 445,412g-$CO_2/m^2$ for apartment building, 474,322g-$CO_2/m^2$ for the basement parking lot, 483,523g-$CO_2/m^2$ for welfare facility, 729,957g-$CO_2/m^2$ for sales facility, 743,560g-$CO_2/m^2$ for other facility, 26,782g-$CO_2/m^2$ for public facility, 43,659g-$CO_2/m^2$ for landscape, 1,113g-$CO_2/m^2$ for indoor facility, 11,251g-$CO_2/m^2$ for outdoor facility and 891g-$CO_2/m^2$ for common temporary based on the average $CO_2$ emission by facility. We can also see the analysis data that in case of using the selected factors only, the rate of error is 7.51% comparing with the emission quantity by using simplified LCA method this study suggests for the whole range of apartment houses and the rate of error is average 3.24% using selective and main materials. And this it is evaluated that we can get the result which is similar to the actual $CO_2$ emission quantity with only the simple information about the apartment house.

A Study on Characteristic Analysis for Indoor Ventilation Performance of Mechanical Ventilation System (기계 환기시스템의 실내 환기성능 특성 해석에 관한 연구)

  • Ku, Jae-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.2
    • /
    • pp.31-37
    • /
    • 2012
  • This paper describes to analyze the ventilation performance of a room air conditioner for indoor comfort control. An experimental apparatus consists of a test room, the room air conditioner, a tracer gas measurement system, a supply fan and a controller. Ventilation performance as a function of human occupancy is evaluated with supply ventilation air using a tracer gas technique of CO2 gas in the test room. The ventilation performance is evaluated in a step-down method based on ASTM Standard E741-83 and is found to increase with increasing supply ventilation rate. The CO2 gas concentration is decayed rapidly without human occupancy. The ventilation performance without human occupancy increases up to 55% and the ventilation performance with one person increases up to 25% at the supply air of 570 lpm comparing with a natural reduction after one hour. A modeling for ventilation performance of a room air conditioner in a test room is presented using experimental datum.