• Title/Summary/Keyword: Fire-Performance

Search Result 2,070, Processing Time 0.03 seconds

A Study on Assessment of Penetration Seals Performance of Nuclear Power Plants (원자력발전소 관통부 충전구조의 내화성능평가에 관한 연구)

  • Cho Hong-Seok;Park Jun-Hyen;Son Bong-Sae;Im Jung-Soon
    • Fire Science and Engineering
    • /
    • v.18 no.4
    • /
    • pp.93-102
    • /
    • 2004
  • The function of fire barrier penetration sealing is highly important to confine a fire propagation a fire severity within a fire area where the fire started. Especially for the penetration seals at the nuclear power plants with the long-term operated history, it is needed to make it clear that the conformance to the sealing requirements has been proven to guarantee the fire-resistive performance of fire barrier penetration parts. If there are any parts of fire barrier penetration sealing which can not meet the required rating for the fire endurance performance, the relevant parts must be modified to meet regulatory requirements. At this paper, the engineering analysis methodology was established to approximate the fire endurance rating for the fire barrier penetration seals. With this study, the method of engineering analysis to decide fire endurance rating for the fire barrier penetration seals was established and this way can be utilized to check the performance of the fire rating for the penetration seal at the domestic nuclear power plants.

Statistical Analysis on the Structure of the Front Door in Apartment House (공동주택 세대 현관 방화문 구조에 관한 통계적 분석)

  • Shim, Han-Young;Park, Won-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.23-24
    • /
    • 2021
  • Since 2011, apartment houses account for about 41% of the fires in residential facilities for the past 10 years. Fire-resistant performance of fire doors is becoming more important to prevent the spread of fire in apartment houses. This research analyzed the structure of fire door through each 10 DB based on the quality inspection report of Continuous Acquisition & Life-cycle Support(CALS) from 2016 to 2020, which passed the fire performance test based on the laws and notices of domestic fire door. Therefore, based on the results of the analysis of DB in the future, we will conduct a study on structural improvement and addition for fireproof performance improvement of fire door.

  • PDF

A Study on The Comparative Survey of Expression Methods for Fire Safety Performance in Korea and Japan (화재안전성능분야에 대한 표현방법에 관한 한.일 의식조사 비교 연구)

  • Koo, In-Hyuk;Oh, Sung-Hae;Seo, Kwang-Hyun;Lee, Jae Young;Sato, Hiroomi;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.27-34
    • /
    • 2008
  • As for the performance related to a fire safety like fire resistance efficiency and evacuation safety etc. It is the ain of this study to investigate the comparative survey of expression methods for fire safety performance in Korea and Japan. The results of this study that there are so difference between Japan and Korea and suggests that the necessity for converting the fire risk calculated by an advanced technique into a simple expression.

  • PDF

Strength Properties of RC Slabs under Elevated Temperatures from Fire (화재시 온도증가로 인한 RC 슬래브의 강도 특성)

  • Im, Cho-Rong;Chung, Chul-Hun;Kim, Yu-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.4
    • /
    • pp.48-60
    • /
    • 2010
  • The fire resistance performance of 2 RC slabs after exposure to the ISO-834 fire standard without loading has been experimentally investigated. A Comparison is made of the fire resistance performance between RC slabs without PP(polypropylene) fibers and RC slabs with PP fibers. From the fire test results, the presence of PP fibers in RC slabs can reduce spalling and enhance their fire resistance. Until now, the determination of fire resistance of reinforced concrete(RC) slabs has essentially been based on tabulated data. According to ACI 216 code and EUROCODE 2, the design of concrete structures is essentially based on tabulated data for appropriate concrete cover and various fire durations. From the comparison between fire test results and codes, current fire design provisions of codes such as the ACI 216 and the EUROCODE 2 are unconservative for estimating mechanical properties of RC slabs at elevated temperatures.

The Problems and Improvements of Process to Predict Fire Risk of a Building in Performance Based Design (성능위주설계에서 화재위험성 예측 과정의 문제점 및 개선방안)

  • Lee, Se-Myeoung
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.3
    • /
    • pp.145-154
    • /
    • 2014
  • Performance based design(PBD) is the method to make a fire safety design against them after predicting the factors of fire risk in a building. Therefore, predicting fire risk in a building is very important process in PBD. For predicting fire risk of a building, an engineer of PBD must consider various factors such as ignition location, ignition point, ignition source, first ignited item, second ignited item, flash over, the state of door and fire suppression system. But, it is difficult to trust fire safety capacity of the design because the process in Korea' PBD is unprofessional and unreasonable. This paper had surveyed some cases of PBD that had been made in Korea to find the problems of the process to predict fire risk. And it have proposed the improvements of process to predict fire risk of a building.

Study of fire protection performance of newly developed cementitious fire protection material for application to architectural building (건축구조물에 적용하기위한 신개발 시멘트계 내화재료의 내화성능에 관한 연구)

  • Kim, Jang-Ho;Park, Hae-Geun;Lee, Myeong-Sub;Won, Jong-Pil;Lim, Yun-Mook;Lee, Kyong-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.633-636
    • /
    • 2006
  • High-rise and large size buildings require high strength concrete and steel structure as a necessity. However, high strength concrete and steel structure are strong material but have a weakness to high temperature. Therefore, fire protection is a matter that must be considered very importantly in design for structure of high strength concrete and steel. Fire proof board that is existing method for fire proof has relatively low performance in fire protection emphasizes the need of new fire protection material due to the using of in numerable inflammables like plastics. The objective of this study is to understand the fire-resisting performance of newly developed fire protection material for building. This paper describes the results of fire tests using ISO curve that is fire protection regulation for buildings of the newly developed cementitious fire protection coating material applied concrete tunnel lining specimens.

  • PDF

An Analysis and Evaluation of Fire Resistance Performance for the Protected Steel Columns in Korea (국내 피복 철골기둥의 내화 성능 분석 및 평가)

  • Shin, Tae Song
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.27-35
    • /
    • 2009
  • Main structural steel members need fire-resistance measures to ensure their fire-resistance performance for a prescribed time. This paper analyzes and evaluates the fire-resistance performance of approved Korean fire-protection products for steel columns. These products are classified into products for board protection and for spray protection, samples of which were selected for the analysis. The fire-resistance performance was analyzed on the basis of Korean and European standards. The Korean standards are considered additional to the Euro-code standards for performance design. The Korean standards generally take more precautions to ensure safety on the temperature side, but require the reflection of material properties, the steel temperature calculation methodology, the profile factor, and the strength verification in a fire.

A Study on the Proposal of Durability and Service Life of Fire Door in apartment house (공동주택 방화문의 내구성능 및 내용연수 제안에 관한 연구)

  • Kwon, Yeong-Jin;Kim, Yun-Seong;Jin, Seung-Hyeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.49-50
    • /
    • 2022
  • There are continuous cases of fire expansion due to fire door problems around the world, including the 2010 Shanghai Apartment Fire, the 2017 Grenfell Tower Fire in England, and the 2020 Ul-san Residential and Commercial Complex Fire. In order to prevent such fire damage, the country has strengthened the performance standards of fire doors, and recently, efforts have been made to ensure the best performance of fire doors by introducing a quality recognition system. Securing the performance of fire doors is a very important aspect. However, there is a concern that old fire doors may not function normally in the event of fire due to natural deterioration, corrosion, and damage during the use process, but countermeasures are insufficient. Therefore, from a management perspective, it is very important to maintain fire doors and secure an appropriate replacement time. Therefore, the purpose of this study is to determine whether the fire door has durability to prevent fire spread in the process of use through operation probability analysis and expert surveys, and to propose an appropriate useful life of the fire door.

  • PDF

Some Considerations for the Fire Safe Design of Tall Buildings

  • Cowlard, Adam;Bittern, Adam;Abecassis-Empis, Cecilia;Torero, Jose L.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.1
    • /
    • pp.63-77
    • /
    • 2013
  • In any subject area related to the provision of safety, failure is typically the most effective mechanism for evoking rapid reform and an introspective assessment of the accepted operating methods and standards within a professional body. In the realm of tall buildings the most notable failures in history, those of the WTC towers, widely accepted as fire induced failures, have not to any significant extent affected the way they are designed with respect to fire safety. This is clearly reflected in the surge in numbers of Tall Buildings being constructed since 2001. The combination of the magnitude and time-scale of the WTC investigation coupled with the absence of meaningful guidance resulting from it strongly hints at the outdatedness of current fire engineering practice as a discipline in the context of such advanced infrastructure. This is further reflected in the continual shift from prescriptive to performance based design in many parts of the world demonstrating an ever growing acceptance that these buildings are beyond the realm of applicability of prescriptive guidance. In order for true performance based engineering to occur however, specific performance goals need to be established for these structures. This work seeks to highlight the critical elements of a fire safety strategy for tall buildings and thus attempt to highlight some specific global performance objectives. A survey of tall building fire investigations is conducted in order to assess the effectiveness of current designs in meeting these objectives, and the current state-of-the-art of fire safety design guidance for tall structures is also analysed on these terms. The correct definition of the design fire for open plan compartments is identified as the critical knowledge gap that must be addressed in order to achieve tall building performance objectives and to provide truly innovative, robust fire safety for these unique structures.

An Empirical Study on the Standard Re-establishment of Water Discharge Performance for the Fire Engine Pump (소방차 펌프의 방수성능 기준 재정립을 위한 실증적 연구)

  • Min, Se-Hong;Kwon, Yong-Joon
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.85-91
    • /
    • 2012
  • This paper analyzed firefighting officers' use situations such as the use time, maximum working pressure, hose diameter, etc. of fire pumps at fire sites and carried out various performance tests by pressures, hose diameters and quantities of fire pumps based on its results because the waterproof performance criterion for a fire pump installed in a fire engine is different from the operation situations at the site and is not clearly prescribed. As a result of site survey, the site uses a higher pressure than the standard water discharge pressure (0.85 MPa) or the high-pressure water discharge pressure (1.4 MPa) prescribed by the approval Standard of the fire pump performance on fire truck. In addition, as a result of pump performance test, the discharged water flow rate, water discharge pressure, etc. was measured to be very different from the currently prescribed the approval standard depending on the hose diameter and firefighting nozzle, so the result of this study proposes a new standard.