• Title/Summary/Keyword: Fire suppression agent

Search Result 36, Processing Time 0.022 seconds

Inert and Halogenated compounds Fire Fighting Agent And Fire Fighting System Research (불활성계와 할로카본계 복합 소화약제 및 소화시스템 개발)

  • Choi, Keun-Joo;Ahn, Sang-Soo;Kim, Jong-Won;Jung, Jong-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.165-171
    • /
    • 2009
  • A compound agent that mixes inert gas agents and halocarbon agents and a complex fire suppression system using the compound agent have been developed. The ultimate goal of this study is to develop the extinguishing agent which doesn't destroy the ozone layer and has low GWP and to develop the fire suppression system. As a result of the test and research for inert gas agents and halocarbon agents, nitrogen and FK-5-1-12 were selected finally and have been tested and studies for three years. Thus, the optimal extinguishing agent and fire suppression system have been accomplished. The performance of the agent and system was tested according to KFI performance test technical standards for gas fire extinguishing system and the fitness of the agent and system for a fire was certified by Korea Fire Industry Technology Institute (KFI).

  • PDF

Extinguishing of Oil Fire by Water Mist Suppression System Using Compressed Inert Gas (불활성 압축가스를 이용한 미세물분무 소화시스템의 유류화재 소화특성)

  • Shin, Chang-Sub;Jeon, Go-Un;Kim, Ki-Whan
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.109-114
    • /
    • 2010
  • Water mist fire suppression system is environmental system and needs a flange pump to jet water. In this research, high pressure Nitrogen cylinder is used as a pressurizing source instead of flange pump, and also we tried to find the possibility of using compressed Nitrogen as a fire suppression agent. As a result, it was possible to design water mist fire suppression system with Nitrogen cylinder and suppress oil fire effectively. With DK1.58 nozzle, the optimum Nitrogen pressure was 80bar and the pressure was stable during water mist spray. However, jet of Nitrogen was not effective fire suppression agent when it was dually used with water mist because water mist has blown away, and it is efficient way to use compressed Nitrogen as a pressurizing source only.

COMPARISON OF THE FIRE SUPPRESSION PERFORMANCE OF HALON REPLACEMENT AGENTS

  • Kim, Andrew K.;Joseph Z. Su
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.542-549
    • /
    • 1997
  • HFC-227ea and HCFC Blend A were evaluated using full-scale fire tests to obtain information on their fire suppression performance, drop-in capability, thermal decomposition products and physical behaviour of the agent such as its flow characteristics in the piping system. Also, full-scale tests were conducted with Halon 1301 to provide a basis for comparison. Halon 1301, at concentrations of 5% to 7.5%, showed effective total-flooding fire- extinguishing performance for all test scenarios. HFC-227ea, at a design concentration of 7.6% or higher, and HCFC Blend A, at a design concentration of 12%, extinguished all fires in the test facility, however, these agents produced higher concentrations of acid gases than Halon 1301. The quantity of the acid gases generated during fire suppression was dependent on agent concentration, agent discharge time, fire type and size as well as extinguishment time.

  • PDF

Efficiency of Water Mist Suppression System Containing Viscosity Agent to Extinguish Wood Cribs Fire (증점제를 함유한 미분무수의 목재화재 소화효과)

  • Kim, Min Hyung;Shin, Changsub
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.78-84
    • /
    • 2014
  • Viscosity agents were added to water to improve extinguishing performance of low pressure water mist suppression system on wood cribs fire, and a small scale wood cribs fire experiment was conducted to measure the extinguishing performance. CMC and agar were used for viscosity agent and as the amount of viscosity agent enlarges, it showed the increase of the viscosity of aqueous solution and the decrease of the fluidity. On wood cribs fire experiment, the extinguishing efficiency was improved with supplemental viscosity agent as it enhanced the adhesive time of aqueous solution on the wood, and therefore expanded the contact time of fire surface. The surface tension of aqueous solution was decreased with the addition of agar which to be assumed as an increase factor of extinguishing efficiency. By the extinguishing experimental result, the most effective extinguishing agent was CMC 0.6 wt.%, with the flame suppression time and the extinguishing time were reduced by 70s and 93s respectively at this concentration.

CO2 Suppression Characteristics of the Nitrogen-diluted Methane Counterflow Non-premixed Flame (질소로 희석된 대향류 메탄 비예혼합화염에서 CO2에 의한 소화특성)

  • Lee, Ho-Hyun;Oh, Chang Bo;Hwang, Cheol Hong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.2
    • /
    • pp.42-48
    • /
    • 2013
  • The $CO_2$ suppression characteristics and flame structure of nitrogen-diluted methane counterflow non-premixed flame were studied experimentally and numerically. To mimic a situation where combustion product gases are entrained into a compartment fire, fuel stream was diluted with $N_2$. A gas-phase suppression agent, $CO_2$, was diluted in the air-stream to investigate the suppression characteristics by the agent. For numerical simulation, an one-dimensional OPPDIF code was used for comparison with experimental results. An optically-thin radiation model(OTM) was adopted to consider radiation effects on the suppression characteristics. It was confirmed experimentally and numerically that suppression limit decreased with increasing nitrogen mole fraction in the fuel stream. A turning point was found only when a radiation heat loss was considered and the extinguishing concentration for turning point was differently predicted compared to the experiment result. Critical extinguishing concentration when neglecting radiation heat loss was also differently predicted compared with the experimental result.

A Study on the Development of Fire Extinguishing Agent and Extinguishing System for ESS Fire (ESS 화재전용 소화약제 및 소화시스템 개발에 관한 연구)

  • Lee, Yeon-Ho;Lee, Joo-Hyung;Kim, Soo-Jin;Chon, Sung-Ho;Choi, Byoung-Chul;Oh, Seung-Ju;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.147-155
    • /
    • 2020
  • This paper presents a study on the development of a fire extinguishing agent and extinguishing system for an energy storage system (ESS) fire. The fire extinguishing agent designed to extinguish an ESS fire is a highly permeable fire extinguisher that reduces the surface tension and viscosity while bringing about cooling action. This is the main extinguishing effect of this type of wetting agent, which displays the characteristics of fire extinguishing agents used for penetrating the battery cells inside the ESS module. For the fire extinguishing system, a local application system was designed to suppress fire on a rack-by-rack basis. A 360° rotating nozzle was inserted into the rear hall of the ESS module, and general nozzles were installed in the rack to maximize the fire extinguishing effect. The fire extinguishing agent was strongly discharged by virtue of the gas release pressure. Experiments on fire suppression performance with ESS module 1 unit and module 3 units showed that all visible flames were extinguished in 8 s and 9 s, respectively, by the fire extinguishing agent. In addition, based on confirming reignition for 600 s after the fire extinguishing agent was exhausted, it was confirmed that the ESS fire was completely extinguished without reignition in all fire suppression performance experiments.

A study on the performance standards of autonomous fire extinguishing system (자율형 초동진압용 소화체계 성능기준에 관한 연구)

  • Kim, Namkyun;Kim, Hwiseong;Park, Jinouk;Park, Byoungjik;Kim, Yangkyun;Yoo, Yongho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.6
    • /
    • pp.655-667
    • /
    • 2020
  • The final purpose of this study is to present the performance evaluation criteria (draft) of the autonomous initial suppression digestion system. In this study, in order to present the performance standards for the autonomous initial suppression fire extinguishing agent system currently in the development stage, the legal performance standards for fire extinguishing equipment currently applied to domestic buildings and the performance standards of similar overseas previous research were compared and analyzed. In addition, based on this, the minimum performance standards required for the digestive system for autonomous initial suppression were presented. When the performance of the digestive system for autonomous initial suppression is evaluated based on the results of this study and applied, it is judged that it is possible to respond more quickly in the situation of fire.

Evaporation Cooling Phenomena of Droplets Containing Fire Suppression Agents (화제 억제제가 첨가된 수용액 액적의 증발냉각 현상)

  • 유갑종;방창훈;김현우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.895-903
    • /
    • 2001
  • Evaporation cooling phenomena of droplets containing fire suppression agents on a hot metal surface were experimentally investigated. Solution of water containing potassium acetate (30-50% by weight) and sodium bromide (10-30% by weight) were used in the experiments, and surface temperatures were ranged from 70-116$^{\circ}C$. The evaporation time of the droplet on the heated surface was determined by using frame-by-frame analysis of the video records. It is found that the apparent evaporation time is shorter in turns of pure water, sodium bromide solution and potassium acetate solution. However, the time averaged heat flux is higher in turns of pure water, sodium bromide solution and potassium acetate solution. In-depth temperature variation of the hot metal does not occur significantly by the kinds of additive.

  • PDF

A Numerical Study on the Extinguishing Effects of CO2 in Counterflow Diffusion Flames with the Concept of Local Application System (국소방출방식 개념의 대향류 확산화염에서 CO2 소화효과에 관한 수치해석 연구)

  • Mun, Sun-Yeo;Park, Chung-Hwa;Hwang, Cheol-Hong;Oh, Chang-Bo
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.55-62
    • /
    • 2012
  • The suppression mechanisms of carbon dioxide ($CO_2$) as a representative fire suppression agent were revisited using a counterflow diffusion flame which could be applied the concept of a local application system. To end this, the low strain rate $CH_4$/air counterflow diffusions with $CO_2$ addition in either fuel or oxidizer stream were examined numerically using detailed-kinetic chemistry. Radiative heat loss due to radiating gas species including $CO_2$ added was considered by the optically thin model (OTM). As a result, the critical $CO_2$ volume fractions in the oxidizer stream required to extinguish the flame were in good agreement with the experimental data reported in the literature, while somewhat under-prediction was observed with $CO_2$ added in the fuel stream. The surrogate agents were adopted to estimate the quantitative contribution with changing in global strain rate ($a_g$) on the flame extinguishment among pure dilution effect, thermal effects including radiation heat loss and chemical effect due to the $CO_2$ fire suppression agent.