대학이 산업수요 맞춤형 인재양성 교육체계를 갖추어 나가기 위해서는 수요자의 입장에서 교육과정을 분석하고 개선해 나갈 필요가 있다. 이러한 취지에서 본 논문은 화재위험성 예측평가분야 교육과정의 전공 적합도를 평가하기 위해 소방관련 산업체 종사자를 대상으로 수요조사를 하였으며 그 결과를 토대로 기술통계분석, 요인분석, 군집분석 그리고 일원분산분석을 실시하였다. 분석 결과, 소방관련 산업체 종사자들은 화재위험성 예측평가 분야의 교육과정이 전공에 적합하다고 평가하였다. 그리고 화재위험성 예측평가분야의 교과목 중 전공기초과목과 전공공통과목의 필요성을 크게 인식하고 있었다. 이러한 분석결과는 향후 지속적으로 교육과정을 개선해 나가는데 기초자료로 활용할 계획이다.
구획실 내 가연물들의 화재거동에 대한 B-RISK의 예측성능을 Fire dynamics simulator (FDS)와 연계하여 검토하였다. 먼저 열발생률(Heat release rate, HRR)에 대한 B-RISK의 예측성능을 검토하기 위해 가연물 한 세트의 실험에서 측정된 HRR 값과 디자인 화재곡선을 B-RISK의 입력조건으로 사용하여 가연물 두 세트에 대한 HRR 곡선을 계산하고 실험에서 측정된 가연물 두 세트의 HRR 값과 비교하였다. B-RISK 결과와 실험결과를 비교하여 B-RISK가 화재성장률에 대한 예측은 어렵지만 최대 HRR 값과 총 열발생량에 대해서는 충분히 예측할 수 있음을 확인하였다. 그리고 B-RISK 계산을 통해 예측된 HRR 값을 FDS의 입력조건으로 사용하여 계산된 결과와 실험결과를 비교하여 B-RISK 계산을 통해 예측된 HRR 값의 화재거동에 대해 검토하였다. 실험에서 측정된 온도 및 화학종 농도 결과와 비교하여 화재성장구간에 대해 차이가 있는 것을 확인하였지만 예측된 HRR 값에서 Percentile이 약 70%인 HRR 값을 사용하더라도 충분히 전체적인 화재거동을 예측할 수 있음을 확인하였다.
4종의 목재에 대한 화재위험성의 예측 및 화재위험성 등급을 평가하기 위해 Chung's equations-IX과 Chung's equation-XII를 이용하였다. 시험편은 녹나무, 산벚나무, 고무나무, 느릅나무를 선정하였다. 연소시험은 ISO 5660-1의 콘칼로리미터 시험법을 이용하였으며, 화재위험성지수-IX (FRI-IX)과 화재위험성지수-XII (FRI-XII)에 대한 화재위험성과 화재위험성등급(FRR)을 비교하였다. 그 결과 화재성능지수-XI (FPI-XI)와 화재성장지수-XI (FGI-XI)은 0.08~11.48와 0.67~111.89로 얻어졌다. 그리고 화재위험성지수-XII (FRI-XII)는 산벚나무(0.45): 등급 A (순위 5) < PMMA(1): 등급 A (순위 4) < 고무나무(1.23): 등급 A (순위 3) < 고무나무(1.56): 등급 A (순위 2) << 녹나무(148.23): 등급 G (순위1)의 순으로 증가하였다. 또한 화재위험성지수-IX (FRI-IX)는 산벚나무(0): 등급 A (순위 3) ≈ 고무나무(0): 등급 A (순위 3) ≈ 느릅나무(0): 등급 A (순위 3) ≈ PMMA(1): 등급 A (순위 2) << 녹나무(66.67): 등급 G (순위1)의 순이었다. 공통적으로 화재위험성은 녹나무가 가장 높은 것으로 제시되었다. 결론적으로 FRI-IX와 FRI-XII의 기준을 바탕으로 보여준 바와 같이 지수의 표현은 다르나, 가연성 재료의 화재위험성평가에 의한 예측은 유사한 경향성을 제시하였다.
5종의 목재에 대한 화재위험성의 예측 및 화재위험성 등급을 평가하기 위해 Chung's equation-IX과 Chung's equation-XII를 이용하였다. 시험편은 미국물푸레나무, 사탕단풍나무, 버드나무, 들메나무, 산벚나무를 선정하였다. 연소시험은 ISO 5660-1의 콘칼로리미터 시험법을 이용하였으며, 화재위험성지수-IX (FRI-IX)과 화재위험성지수-XII (FRI-XII)에 대한 화재위험성과 화재위험성등급(FRR)을 비교하였다. 그 결과 화재성능지수-XI (FPI-XI)와 화재성장지수-XI (FGI-XI)은 0.44~1.05와 0.89~3.11로 얻어졌다. 그리고 화재위험성지수-XII (FRI-XII)는 산벚나무(0.85): 등급 A ≈ PMMA(1): 등급 A ≈ 미국물푸레나무(1.22): 등급 A ≈ 사탕단풍나무(1.53): 등급 A < 버드나무(4.00): 등급 C < 들메나무(7.07): 등급 D 의 순으로 증가하였다. 또한 화재위험성지수-IX (FRI-IX)은 PMMA(1): 등급 A ≈ 사탕단풍나무(2.28): 등급 A ≈ 산벚나무(3.24): 등급 A < 미국물푸레나무(5.73): 등급 B < 들메나무(10.29): 등급 C ≪ 버드나무(48.30): 등급 G의 순으로 나타났다. 공통적으로 화재위험성은 버드나무와 들메나무가 가장 높게 나타났다. 결론적으로 FRI-IX와 FRI-XII의 기준을 근거로 하여 보여준 바와 같이 지수의 표현은 다르나, 가연성 재료의 화재위험성평가에 의한 예측은 유사한 경향성을 제시하였다.
본 논문은 서울시에 존재하는 건물을 대상으로 화재 발생 시 재산 피해액, 화재 발생 여부를 예측하여 건물별 화재 위험도를 도출하였다. 본 연구는 건물의 특성뿐 아니라 해당 건물이 속한 행정동의 특성 및 소방 시설 접근성과 같은 변수를 활용하였다는 점에서 기존 선행연구와의 차이점을 지닌다. 앙상블 보팅(Ensemble Voting) 기법을 활용해 서로 다른 알고리즘을 병합했으며, 이를 통해 재산 피해액과 화재 발생 여부를 예측하고 변수 중요도를 추출하여 화재 위험도를 산출하는 방향으로 연구를 진행하였다. 구축된 모델을 사용하여 서울시에 존재하는 300개 건물을 대상으로 적용한 결과, 화재 위험도 1등급의 경우 건물 내 세대 수가 많으며, 관할 119안전센터가 가장 멀리 위치하는 등 화재 발생 시 그 규모를 키울 수 있는 요인들이 많은 것으로 나타났다. 반면 5등급의 경우, 주변 건물 수나 사업체 수는 많지만, 관할 119안전센터가 가장 가까이 위치해 있어 화재에 적절히 대응할 수 있는 건물들로 나타났다.
연구목적: 본 연구는 화재발생 건축물 정보, 신고자 취득 정보 등 초기 정보를 활용하여 화재현장의 위험도를 예측하여, 재난 발생 초기에 효과적인 소방자원 동원 및 적절한 대응을 위한 피해최소화 전략 수립을 지원하는 위험도 예측 모델을 개발하고자 한다. 연구방법: 화재 통계 데이터 상에서 화재의 피해규모와 관련된 변수 규명을 위해 머신러닝 알고리즘을 이용한 변수간 상관성 분석을 실시하여 예측 가능성을 검토하고, 데이터 표준화 및 이산화 등의 전처리를 통해 학습 데이터 셋을 구축하였다. 이를 활용하여 예측 정확도가 높은 것으로 평가 받고 있는 복수의 머신러닝 알고리즘을 테스트하여 가장 정확도가 높은 알고리즘을 적용한 위험도 예측 모델을 개발하였다. 연구결과: 머신러닝 알고리즘 성능 테스트 결과 랜덤포레스트 알고리즘의 정확도가 가장 높게 나왔으며, 위험도 등급에 대해서는 중간치에 대한 정확성이 상대적으로 높은 것으로 확인되었다. 결론: 화재 통계 상 피해규모 데이터의 편향성에 의해 예측모델 정확도가 제한적으로 나타났으며, 예측 모델 성능 개선을 위해 데이터 정합성 및 결손치 보완 등을 통한 데이터 정제가 필요하다.
A lot of manpower and budgets are being used to prevent fires, and only a small portion of the data generated during this process is used for disaster prevention activities. This study develops a prediction model of fire occurrence probability based on data mining in order to more actively use these data for disaster prevention activities. For this purpose, variables for predicting fire occurrence probability of various buildings were selected and data of construction administrative system, national fire information system, and Korea Fire Insurance Association were collected and integrated data set was constructed. After appropriate data cleansing and preprocessing, various data mining methodologies such as artificial neural network, decision trees, SVM, and Naive Bayesian were used to develop a prediction model of the fire occurrence probability of buildings. The most accurate model among the derived models is Linear SVM model which shows 68.42% as experimental data and 63.54% as verification data and it is the best model to predict fire occurrence probability of buildings. As this study develops the prediction model which uses only the set values of the specific ranges, future studies may explore more opportunites to use various setting values not shown in this study.
본 연구에서는 대상물질을 선점한 후 그에 따른 세 가지 기준 즉 독성, 화재폭발, 환경기준과 각각의 피해예측기법을 설정하고 이 기준들을 알고리즘을 통한 통합한 종합위해등급으로서 선정된 대상물질에 적용하였다. 특히, 환경기준은 포괄적인 개념으로서 USCG 및 MSDS의 환경기준 분류와 NFPA의 건강위해성(Nh) 중 환경관련 부분을 조합하여 환경지수 모델화를 하였다. 또한 각 기준에 따른 피해예측 기법을 선택하여 지역별 인의에 위치한 화학물질 관련업체에 사용 또는 저장 중인 유해화학물질에 대해 적용하여 사용물질에 대한 종합위해등급 설정(단일물질에 대한 가연성, 독성, 반응성, 환경성에 대한 Hazard level 및 표시 모델화) 및 그에 따른 사고시 피해예측 강도산정 (CPQRA, IAEA, VZ eq), Risk contour를 구할 수 있었다. 이 결과 모든 화학공정 및 저장 등에서 발생할 수 있는 독성 누출, 화재폭발의 잠재적 위험성산정을 통한 안전성 평가의 Tool로 활용이 가능하다.
산불로 인한 피해를 최소화하기 위해서 산불위험 예보 정보를 제공하는 것은 필수적이다. 따라서 본 연구에서는 우리나라를 대상으로 기계학습 기반의 산불위험 중기예보(1일 후부터 7일 후까지) 모델을 개발하였다. Global Data Assimilation and Prediction System (GDAPS)의 기상예보 자료와 기 개발된 산불위험지수(Fire Risk Index, FRI)의 과거 및 현재 정보, 그리고 기타 환경요소(i.e., 고도, 산불다발지수, 가뭄지수)의 현재 정보를 반영하여 모델을 개발하였다. 본 연구에서는 실시간 학습을 통해 모델을 개발하였으며, 효율적인 모델 개발을 목적으로 과거 산불위험지수와 가뭄지수의 유무를 고려하여 세가지 경우(Scheme 1: 과거 산불위험지수 및 가뭄지수, Scheme 2: 과거 산불위험지수, Scheme 3: 과거 산불위험지수 변화 추세 및 가뭄지수)로 연구를 수행하였다. 본 연구에서 개발된 산불위험예보모델은 예보기간에 상관없이 높은 정확도(피어슨 상관계수(Pearson correlation) >0.8, relative root mean square error <10%)를 나타냈으며, 실제 산불 발생 건에 대해서도 유의미한 결과를 보였다. 과거 산불위험지수의 추세보다는 산불위험지수 값 자체를 입력변수로 사용하는 것이 높은 정확도를 보였으며, 가뭄지수 사용과 관계없이 좋은 결과를 나타냈다.
Due to the nature of modern society, buildings are becoming larger and more complex. As a result, the design conditions of the building are changing. However, despite the complexities of buildings, the fire resistance performance is still equalized to one hour without considering fire engineering analysis in Korea, so there is a risk according to actual fire design conditions. Therefore, the purpose of this study is to calculate the required fire resistance time for actual fire through fire mechanics analysis and case study.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.