• Title/Summary/Keyword: Fire protection safety

Search Result 643, Processing Time 0.02 seconds

Measurement of the Size Distribution of Smoke Particles with Plastic Types Under Various Fire Conditions (다양한 화재조건에서 플라스틱 종류에 따른 연기입자의 크기분포 변화 측정)

  • Goo, Jaehark;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.8-15
    • /
    • 2017
  • Most fire victims succumb to smoke inhalation, and fire smoke toxicity from interior materials is increasing with increased use of plastics. Large amounts of hazardous effects of smoke are related to deposition of smoke particles in respiratory tracts, and deposition characteristics are influenced by size distribution of particles. Thus, it is essential to know the size distribution of smoke particles from plastics for hazard analysis of fire smoke. In a recent study, it has been shown that size distributions of smoke particles from PP are different from wood in many aspects. In order to know whether other plastics show the same characteristics as PP, size distributions of smoke particles from four plastic materials (LDPE, PA66, PMMA, and PVC) were measured in real time under each fire type with various temperature and oxygen supply. In this study, smoke particles from different plastics were generated uniformly by using steady-state tube furnace method provided in ISO/TS 19700. Their size distributions were measured by using an electrical low pressure impactor (ELPI). Results of measurements showed that size distributions of smoke particles from these four plastic materials were similar to those from PP in many aspects. However, they were distinctively different from those of wood.

[Retracted]Improving Performance of Foam Proportioner Utilizing Metering Venturi Type ([논문철회]미터링 벤츄리를 이용한 포소화약제 혼합장치의 성능개선)

  • Joo, Seung-Ho;Kong, Ha-Sung;Gong, Ye-Som
    • Fire Science and Engineering
    • /
    • v.29 no.3
    • /
    • pp.48-52
    • /
    • 2015
  • In this study, we have evaluated whether the mixing ratio is proper by creating a mixing device for foam proportioner that mainly is employed in practice utilizing a metering venturi type. In case of the mixing ratio for 3%, water under pressure of 76 mm in diameter and the original liquid of a foam fire extinguishing agent of 31.75 mm in diameter have showed up the fluctuation rate just as much as 3.1~3.5% of the mixing ratio. Because water under pressure of 101.6 mm in diameter and the original liquid of a foam fire extinguishing agent of 38.1 mm in diameter have showed up 3.3~3.7% of the fluctuation rate, water under pressure of 101.6 mm in diameter and the original liquid of a foam fire extinguishing agent of 38.1 mm in diameter have satisfied 3.0~3.9% of performance criterion. And also, in case of the 6% of mixture rate, water under pressure of 76.2 mm in diameter and the original liquid of a foam fire extinguishing agent of 31.75 mm in diameter have showed up the fluctuation rate just as much as 6.4~6.8% of the mixing ratio. Because water under pressure of 101.6 mm in diameter and the original liquid of a foam fire extinguishing agent of 38.1 mm in diameter have showed up 6.0~6.8% of the fluctuation rate, water under pressure of 101.6 mm in diameter and the original liquid of a foam fire extinguishing agent of 38.1 mm in diameter have satisfied 6.0~7.0% of performance criterion.

A Study on Development of Shutoff Operating System of Ultra-High Pressure Positive Displacement Pump (초고압 용적형 펌프의 체절운전시스템 개발에 관한 연구)

  • Min, Se-Hong;Kim, Ho-Chul;Sung, Gi-Chan
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.106-113
    • /
    • 2016
  • Ultra-high pressure positive displacement pump can discharge high pressure water with mass volume, which depends on periodic changes in volume that made by rotation motor. Its high efficiency of discharge is one of the most strong point of positive displacement pump. Due to its simple system structure, it can be miniaturized and lightened. Positive displacement pump can discharge high pressure with stable flow rate, irrespective of pressure fluctuate. This is the reason that positive displacement pump was used instead of centrifugal pump. In this study, shutoff operating system was developed for positive displacement pump to secure safety of high pressure operate. This shutoff system contains controller system, electronic clutch, and relief valve, and each part is mutual supplementation. Speed test was carried out in order to check operation of controller program and electronic clutch and fluid flow, venting experiment of the relief valve. It was confirmed that segment system of ultra-high pressure positive displacement pump is operated.

Analysis of Vulnerability of Emergency Transport Service for Flooded Area (침수피해지역의 응급이송서비스 취약성 분석)

  • Lee, Yoon-Ha;Hong, Won-Hwa;Lee, Ji-Soo;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.122-130
    • /
    • 2018
  • Recent urbanization, population densification, and the impact of global climate change are causing disasters to become larger and more complex. Meanwhile, in Korea, there is an emphasis on preventing, restoring, and recovering from disasters. However, disaster medical care, which is absolutely necessary to maintain life in a disaster, is being ignored. Therefore, in this study, we selected Seoul as the study area where flood damage is frequent and underground housing is densely populated. Assuming underground housing in the immersion history area as the emergency patient site, transfer distance and transfer time were analyzed. This study considered both accessibility to emergency medical facilities and disaster sites and accessibility from emergency services to disaster sites. Therefore, it seems to be meaningful as basic data for the improvement of emergency medical services.

Air Curtain Nozzle Design for Uniform Jet Expulsion (균일한 제트 분출을 위한 에어커튼 노즐 설계)

  • Park, Won-Hee;Chang, Hee-Chul
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.39-45
    • /
    • 2016
  • The optimal design of an air curtain nozzle installed at exits, such as fire doors, was determined in order to block the flow of smoke into safe zones. Smoke is the greatest cause of loss of life during the fire. To block the flow of smoke, the airflow must be expelled uniformly without eccentricity from the slits in the air curtain nozzle installed on the upper part of the opening. In order to accomplish this, factors such as air inflow volume, shape of the internal slits, and thickness of the external slits were considered as variables in this study, and a numerical analysis was performed under various conditions. This led to the selection of a final shape which led to the finalization of a design shape. The final shape was manufactured as a prototype and the results were compared and verified with the results of the numerical analysis. The relative error of the numerical analysis results was less than 1%, and the average speed of all the slits was tested, exhibiting a highly consistent tendency.

A Study about Introductory Plan of Automatic Wet Pipe Sprinkler System to Hydraulically Designed System (습식 스프링클러설비의 수리계산방식 도입방안에 관한 연구)

  • Park, Bong-Rae;Kong, Ha-Sung
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.69-77
    • /
    • 2007
  • Our country automatic wet pipe sprinkler system of hydraulically designed system has not deviated from the pipe regulation process, therefore we face limitations when using an independent method to hydraulically designed system. Therefore. after reviewing a developed country's methods using the drainage-density concept, we found it necessary for our country to introduce the drainage-density concept. Currently, under the National Fire Safety Codes(NFSC), this does not solve the problem and the limitation of hydraulically designed system because different problems arise depending on where the head was installed. To make improvements, first, such as the developed country, overcome the difference by introducing the drainage-density concept to determine the amount of drainage. Second, by using diverse head caliber and decreasing the limits on the amounts of distribution, we can expect a leveling off of the drainage density. Third, using the increase of hydraulically designed system through the application of the rule to hydraulically designed system, finally, development to performance based fire protection design.

Numerical Study on Auto-ignition and Combustion Emissions Using Gasoline/Ethanol Surrogates (휘발유/에탄올 혼합연료의 자연발화 및 연소배기가스 특성에 관한 수치적 연구)

  • Lee, Eui Ju
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.1-6
    • /
    • 2016
  • More than five thousands transportation fires occurannually in Korea and the resulting destruction of property and loss of life is huge and results in traffic and environmental pollution. The recent development of automobile technology such as the hybrid concept and use of bio fuels makes fire protection even more difficult due to a lack of understanding of the new adapted system including vehicle engines. In this study, a numerical simulation was performed on a PSR (perfectly Stirred Reactor) to simulate an automobile engine and to clarify the effect of gasoline/ethanol surrogates as a fuel. The temperature, NOx and soot emissions were predicted to decrease with increasing ethanol content, but that of unburned hydrocarbons was found to increase dramatically. The result will provide not only the basic thermal characteristics for engines and their after-treatment systems, but also make it possible to assess the potential for fire events in these systems when an ethanol mixed fuel is used in gasoline vehicles.

Measurement of Autoignition Temperature for Toluene + iso-Propanol (IPA) and p-Xylene+n-Butanol Systems (Toluene과 iso-Propanol계 및 p-Xylene과 n-Butanol계의 자연발화온도 측정)

  • Yoon, Yeo-Song;Ha, Dong-Myeong;Yu, Hyun-Sik;Lee, Yong-Soon
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.172-177
    • /
    • 2010
  • The values of the AIT (autoignition temperature) for fire and explosion protection are normally the lowest reported. The MAITB (Minimum Autoignition Temperature Behavior) of flammable liquid mixture is exhibited when the AITs of mixture is below the AIT of the individual components. The MAITB is an interesting experimental features, which can be significant from the perspective of industrial fire safety. In this study, the AITs of toluene + iso-propanol(IPA) and p-xylene + n-butanol systems were measured using ASTM E659-78 apparatus. The AITs of toluene, iso-propanol (IPA), pxylene and n-butanol which constituted two binary systems were $547^{\circ}C,\;463^{\circ}C,\;557^{\circ}C$ and $340^{\circ}C$ respectively. The toluene + iso-propanol(IPA) system is exhibited MAITB at 0.3 mole fraction of toluene, and its minimum autoignition temperature was $460^{\circ}C$.

A Study on Explosion and Fire Risk of Lithium-Ion and Lithium-Polymer Battery (리튬이온 및 리튬폴리머 배터리의 폭발과 화재 위험성에 관한 연구)

  • Lee, Bum Joo;Choi, Gyeong Joo;Lee, Sang Ho;Jeong, Yeon Man;Park, Young;Cho, Dong Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.855-863
    • /
    • 2017
  • Because Li-ion battery and Li-Polymer battery have high-energy storage density, they are used for various electronic devices such as electronic cigarette, electronic bicycle, drone, second battery, even golf cart and electronic car. Recently, however, battery explosion is sometimes occurring on electronic devices using Li-ion battery and is becoming serious as bodily harm is breaking out due to explosion. For this, this paper described the Li-ion Battery's operating principles and verified the cause of explosion by overload tests caused by the high-energy storage density. According to the these experiments, we conducted a study to develope scanning techniques of fire and safety measures.

A Study on the Rehabilitation Room of Firefighters at Disaster Spot (재난현장 소방공무원의 회복실에 관한 연구)

  • Chae, Jin;Yim, Dong-Kyun
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.116-125
    • /
    • 2020
  • This study intends to provide a model for the establishment of a rehabilitation room for the safety and rehabilitation of firefighters by proposing a basis for the establishment of a firefighter rehabilitation room at disaster sites. To achieve the research objectives, a questionnaire, frequency analysis, and variance analysis were conducted to assess the effectiveness of rehabilitation rooms for firefighters. Based on the results of the research, the policy suggestions for operating an effective rehabilitation room are as follows. An organization of the operation of the rehabilitation room should be established at each firefighting headquarters, and human resources must be secured for the operation of the rehabilitation room. In addition, detailed operating standards such as the operation contents of the rehabilitation room's operation manager and its operator, as well as its operation procedures should be prepared. Additionally, training to improve the rehabilitation room and its understanding is needed.