• Title/Summary/Keyword: Fire proof structure

Search Result 22, Processing Time 0.024 seconds

Derivation of the Mechanical Properties of Structural Steels at High Temperatures (고열 환경에서의 구조용 강재 특성 데이터베이스 구축)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.47-55
    • /
    • 2007
  • The mechanical properties such as 0.2% and 1% offset proof strength and elastic modulus are essential for a structural steel structure when the structure would be evaluated and designed to identify the performance of the structural stability exposed to fire condition. To obtain the mechanical properties for the structural steels at high temperature which are consisted of ordinary and marine ones, the tensile tests at various high temperatures had been conducted with two kinds of specimen of general structural steel SS 400 and welded steel SM 490 at the range of room temperature to $900^{\circ}C$ at interval of $100^{\circ}C$.

The Liquid Flame Proofing Agent's Permeating Effect of Wood Using Microwave (마이크로파를 이용한 목재의 액상방염약제 침투효과 연구)

  • Park, Cheul-Woo;Her, Jae-Won;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.3
    • /
    • pp.256-264
    • /
    • 2011
  • By implementing an analysis on the liquid flame proof agent infiltration of microwave-heated wood under soaking conditions (room temperature soaking, heat soaking), its correlation with wood temperature, and the structure of wood and permeating components after soaking in flame proof agent, which was carried out as basic research in order to improve the fire resistance performance of the wood itself, it is found that the infiltration increases as the microwave heating time increases, while for heat soaking, it is found that high infiltration as well as the stable permeability of flame proof agent is achievable. Also, when the wood temperature is more than $80^{\circ}C$, the infiltration by the flame proof agent increased, and a very even infiltration of flame proof agent was observed, which implies that the liquid flame proof agent has a dependency on temperature change of the wood as a condition to penetrate into the wood. As a result of fine structure analysis, the flame proof agent transfer between cells through pits was considered as a cause to increase the infiltration of flame proof agent, and it is also shown that for heat soaking among the permeating component analysis, as the crystallized flame proof agent around the heartwood and sapwood inner pits increases, the flame proof agent can penetrate into the the heartwood part.

Development of Technology to Secure Refuge Space by Using Existing Restroom (화장실을 이용한 층별 피난공간 확보 기술개발)

  • Kim, Ji-Seok;Shin, Hyun-Joon;Kim, Jung-Yup;Park, Byoung-Jik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.1
    • /
    • pp.24-30
    • /
    • 2015
  • The fire on a high-rise building would possibly cause fatalities because of ineffective egress due to extended evacuation distance in huge building structure, coupled with dense population, thus requiring secured optimal evacuation method and space. The restroom located in the living space is considered to be useful refuge space which is built with wet pipe and noncombustible materials. This study aimed to develop a system that would make use of the existing restroom as a fire refuge space. Ventilation duct were installed to discharge odor during normal conditions. We could serve the air supply duct to also raise the air pressure in the restroom so as to prevent the toxic gas from gapping around the restroom. The nozzle for the water screen would be installed in restroom door facing the living room to form the water screen which would protect the door. This study is intended to replace the existing refuge space with the restroom in such a way as described above.

Study of an Efficient Method for Securing Evidence During the Fire Investigation (화재조사 시 증거물의 효율적인 확보 방안에 관한 연구)

  • Ye, Su-Jo;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.43-47
    • /
    • 2016
  • The recent changes in the judicial system in South Korea, including the stronger trial-centrism and legal market opening, have made fire investigations seek more scientific evidence and structure. The collection of physical evidence is very important to prove the substantial truth of a fire at the court. Without the appropriate physical proof, the credibility of a fire investigation is lost as evidence in a court. Therefore, the fire investigation team needs to carefully handle the fire site and fire initiation evidence because evidence of a fire incident can be destroyed easily by chemical and physical damage. In addition, the fire investigation team also needs to carefully record the collections of any evidence including pictures and their analysis. This study proposed the needs of the procedure manual and guidelines that can provide a step-by-step process of fire investigations in South Korea. This study also helps fire investigation agencies to secure fire-scene evidence to distinctly investigate the facts of fire. The guidelines and manual can eventually improve the ways for the fire investigation processes in South Korea.

The study of the efficiency augmentation model under Urban system - a point Taegu subway fire accident probelm and countermeasure - (대구지하철 화재사고를 통한 도시철도의 효율성 증대 모형에 관한 연구)

  • Jung Ye-Seoung
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.239-250
    • /
    • 2003
  • It explained the cause and a process of Taegu subway fire accident in this report. Will reach and to lead it analyzed the structure and actual proof problem which it follows in Urban construction and the operation of Korea. The Urban is operated efficiently to be respected, it demands a security division order to become fixed the culture which it uses, it intercepts the misfortune due to the human being the setup for with the destroyer it is possible. This report will become the place help which reappraises all systems against the construction and the operation of the Urban system.

  • PDF

A Study on the Application of Bushings Fire Prevent Structure to Prevent Fire Spread of Transformer (변압기의 화재확산 방지를 위한 부싱 방화구조체 적용에 관한 연구)

  • Kim, Do-Hyun;Cho, Nam-Wook;Yoon, Choung-Ho;Park, Pil-Yong;Park, Keun-Sung
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.53-62
    • /
    • 2017
  • Electric power which is the energy source of economy and industries requires long distance transportation due to regional difference between its production and consumption, and it is supplied through the multi-loop transmission and distribution system. Prior to its actual use, electric power flows through several transformations by voltage transformers in substations depending on the characteristics of each usage, and a transformer has the structure consisting of the main body, winding wire, insulating oil and bushings. A transformer fire that breaks out in substations entails the primary damage that interrupts the power supply to houses and commercial facilities and causes various safety accidents as well as the secondary economic losses. It is considered that causes of such fire include the leak of insulating oil resulting from the destruction of bottom part of bushings, and the chain reaction of fire due to insulating oil that reaches its ignition point within 1 second. The smoke detector and automatic fire extinguishing system are established in order to minimize fire damage, but a difficulty in securing golden time for extinguishing fire due to delay in the operation of detector and release of gas from the extinguishing system has become a problem. Accordingly, this study was carried out according to needs of active mechanism to prevent the spread of fire and block the leak of insulating oil, in accordance with the importance of securing golden time in extinguishing a fire in its early stage. A bushings fireproof structure was developed by applying the high temperature shape retention materials, which are expanded by flame, and mechanical flame cutoff devices. The bushings fireproof structure was installed on the transformer model produced by applying the actual standards of bushings and flange, and the full scale fire test was carried out. It was confirmed that the bushings fireproof structure operated at accurate position and height within 3 seconds from the flame initiation. It is considered that it could block the spread of flame effectively in the event of actual transformer fire.

A Study on Fire-proof Characteristics of Ultra High Strength Concrete Using Polyamide Fiber (폴리아미드섬유를 사용한 초고강도 콘크리트의 내화성능에 관한 연구)

  • Lee, Soo-Choul;Jeon, Joong-Kyu;Jeon, Chan-Ki
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.4
    • /
    • pp.286-293
    • /
    • 2011
  • Accordingly architectural structure is getting high-rise and bigger, a use of high strength and high performance concrete has been increased. High performance concrete has cons of explosion in a fire. This explosion in the fire can cause the loss of the sheath on a concrete surface, therefore it effects that increasing a rate of heat transmission between the steel bar and inner concrete. Preventing this explosion of high performance concrete in the fire, many kinds of researches are now in progressing. Typically, researches with using polypropylene-fiber and steel-fiber can prove controling the explosion, but the reduction of mobility was posed as a problem of workability. Consequently, to solve the problem as mentioned above, concrete cans secure fire resisting capacity through the using of coating liquid, including Ester-lubricant and non-ionic characteristic surfactant. This research has been drawn a ideal condition in compressive strength areas of concrete by an experiment. When applying 13mm of polyamide fiber, proper fiber mixing volume by compressive strength areas of concrete more than 2.5kg in 160MPa. These amount of a compound can control the explosion.

A Study on High Strength Concrete of Concrete Filled Steel Tube Column (CFT 기둥용 초고강도 충전콘크리트에 관한 연구)

  • Jung, Keun-Ho;Lim, Nam-Gi;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.127-132
    • /
    • 2004
  • CFT(Concrete Filled Steel Tube) is a structure of circular or squared of steel column filled with concrete. The steel tube holds the concrete inside and that makes this structure to perform superior features on stiffness, proof stress, transformation, fire resistance and construction itself. In this study, by over the 800kgf/$\textrm{cm}^2$ of high strength concrete for CFT column, research has been done on the basic property of matter such as fluidity, resistance on segregation, compressive strength, setting icons of the concrete filled in the steel tube under conditions of standard weather. Physical properties of concrete for CFT that Concrete with silica fume, fly ash of air entraining and high-range water reducing agent, that used to CFT column research purpose to find the most ideal composition, which is achieved by the investigation in the concrete's property of matter like ability of Slump, Slump Flow, Air content, Bleeding, and Settlement. For this study, experiments which are bused on obtained the result through physical test are practiced, with all of the experiment, specimens only for control are produced in each method of curing and analyzed to relations with core strength in mock-up test. In mock-up test, the research is studied compactability of concrete filled in tube and degree of hydration hysteresis, as a basic reference for applying to field of CFT column which is used over 800kgf/$\textrm{cm}^2$ high strength concrete.

The Planning of Temporary Housing for Post Application of Mega Sports Facilities - Focused on the 2018 Winter Olympics - (메가스포츠시설의 사후 활용을 위한 임시주거 계획 - 2018평창동계올림픽을 중심으로 -)

  • Lee, Jong-Chan;Kang, Youn-Do;Kim, Byung-Sean
    • KIEAE Journal
    • /
    • v.16 no.4
    • /
    • pp.41-46
    • /
    • 2016
  • Purpose: This is a study on the planning of temporary housing for post application of Mega Sports facilities. The subject of the study is 2018 Pyeongchang Winter Olympics, which is to suggest building an alternative temporary housing using shipping containers(high cube), which solve the lack of accommodations and recycle temporary housing after Olympics, save money and be eco-friendly in Olympics. Method: This study includes this ; research on the a fact-finding survey about Mega sports facilities post application and demand survey on 2018 Pyeongchang Winter Olympics accomodations and an analysis about temporary housing plan. Furthermore we decided temporary housing building plan by analyzing residents' needs and traits of the housing etc. Through this, we made a schematic design for household units. Result: As a result, this study is a plan of making space, forms, and structure. The planned size is $38.4m^2$(L:12m, W:3.2m) except balcony, and indoor height is 2.5m. The space consists of entrance, bathroom, bedroom and living room with folding furniture system. Also there's a detailed floor plan of the ceiling, wall, and floor we drew up. The ceiling and wall consist of dampproof film, noncombustible board, fire proof urethane form, and color-designed sheet. The floor is composed of floor tile, cement mortar, light concrete(with heat coil), insulation, and dampproof film. Additionally, this study is a plan of interior dry wall with detail using modular construction method for work efficiency and quality improvement.

A Study on the CMOS Camera robust to radiation environments (방사선 환경에 강인한 CMOS카메라에 관한 연구)

  • Baek, Dong-Hyun;Kim, Bae-Hoon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.27-34
    • /
    • 2020
  • Human access is restricted to environment where radiation sources are used, however observation equipment should be radiation-resistant as it is exposed. Therefore, if tungsten with the highest specific gravity and melting point and the lowest lead were selected to reduce the dose to the Cobalt 60 radiation source to 1/8, Tu had a volume of 432.6cm3, a thickness of 2.4cm, and Pb had a volume of 961cm3,, a thickness of 3.6cm. By applying this method, produced a radiation resistant CMOS camera with a camera module using a CMOS Image sensor and a radiation shielding structured housing. As a result of applying the head detachable 2M AHD camera (No. ①) that survived the experiment to select the optimal shielding thickness, when shielding the associated equipment such as cameras, adapters, etc. is achieved, it was confirmed that the design of the structure is appropriate by operating well at doses higher than 1.88×106rad. Therefore, it is expected to secure the camera technology and business feasibility that can be applied to high radiation environments.