• Title/Summary/Keyword: Fire location

Search Result 388, Processing Time 0.024 seconds

A Study on the Occurrences and Causes of Accidents in Lower Grade Elementary School Children (초등학교 저학년 아동들의 안전사고 발생 실태 및 관련요인 분석)

  • 김소선;이은숙
    • Journal of Korean Academy of Nursing
    • /
    • v.29 no.1
    • /
    • pp.117-126
    • /
    • 1999
  • Accidents involving children are an important cause of death and disability. They also have enomorous financial implications. In order to prevent childhood accidents, research and education for safety should be strengthened. The purpose of this study was to determine how often young children have accidents and what factors affect the accident rate. The sample consisted of 771 children who were in the second, third and forth grades of two elementary schools located in Kyung-gi Province. One school had students from middle class families living in apartment complexes and the other, students from lower income families mainly living in single houses. The questionnaires included items on the occurance of accidents and the parents' attitudes regarding accidents during the academic year from March 1997 to February 1998. The Questionnaires were distributed to conventiently selected students to be compeleted by their parents and collected during the period of May 28, to June 6, 1998. The data were analyzed using SAS PC statistical package. The results of the study are as follows ; 1. Of 771 student subjects, 393 had 887 accidental injuries during the study period. 2. The month, the day and the time with the highest accident rate were May, Sunday, and between 1 and 4 p. m. each. 3. In the analysis of the location where the injury took place, the most frequent place was on around their homes followed by school and, then, inside the home 4. Most of the accidents were caused by carelessness on the part of the children and the most frequent type of injury was an abrasion. 5. Children most injured their legs 6. They were treated at home most often and usually emergency treatment was performed by family members with, disinfection being the main type of first aid. Cost of the treatment ranged from 8,000 to 20,000 won in most cases. 7. House type and parents' education level were statistically significant in chi-square analysis. 8. Parents educate their children about traffic safety most frequently followed by fire safety and, then, prevention of violence. 9. Parents think that prevention of violence should be the most important part of injury prevention education both at school and home. 10. To identify factors related to accident occurrence, multiple logistic regression was performed and the main factors were birth order and house type.

  • PDF

Stochastic Timed Net and Its Minimum Cycle Time Analysis (확률적 시간 넷과 최소 순회 시간 분석)

  • Yim Jae-Geol;Shim Kyu-Bark
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.5
    • /
    • pp.671-680
    • /
    • 2006
  • As a mathematical technique with which we can find the minimum duration time needed to fire all the transitions at least once and coming back to the initial marking in a timed net, the minimum cycle time method has been widely used in computer system analysis. A timed net is a modified version of a Petri net where a transition is associated with a delay time. A delay time used in a timed net is a constant even though the duration time associated with an event in the world is a stochastic number in general. In the consequence, the result of minimum cycle time analysis is not realistic. Therefore, we propose ‘Stochastic Timed Net' where a transition can be associated with a stochastic number and introduce a minimum cycle time analysis method for ‘Stochastic Timed Net’ As an example of the application of ‘Stochastic Timed Net’, we introduce a ‘Stochastic Timed Net' model of a Location Based Service Providing Multimedia System and the result of minimum cycle time analysis of it. Whereas the typical form of the result of the existing minimum cycle time analysis is 'It takes at least 10 time units', the typical form of the result of minimum cycle time analysis of a ‘Stochastic Timed Net' is in the probability form such as "The probability of the events in which it finishes its job within 10 time units is 85%."

  • PDF

Design of Hazardous Fume Exhaust System in Vacuum Pressure Impregnation Process Using CFD (CFD를 이용한 진공가압함침공정 내 유해가스 배출시스템 설계)

  • Jang, Jungyu;Yoo, Yup;Park, Hyundo;Moon, Il;Lim, Baekgyu;Kim, Junghwan;Cho, Hyungtae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.521-531
    • /
    • 2021
  • Vacuum Pressure Impregnation (VPI) is a process that enhances physical properties by coating some types of epoxy resins on windings of stator used in large rotators such as generators and motors. During vacuum and pressurization of the VPI process, resin gas is generated by vaporization of epoxy resin. When the tank is opened for curing after finishing impregnation, resin gas is leaked out of the tank. If the leaked resin gas spreads throughout the workplace, there are safety and environmental problems such as fire, explosion and respiratory problems. So, exhaust system for resin gas is required during the process. In this study, a case study of exhaust efficiency by location of vent was conducted using Computational Fluid Dynamics (CFD) in order to design a system for exhausting resin gas generated by the VPI process. The optimal exhaust system of this study allowed more than 90% of resin gas to be exhausted within 1,800 seconds and reduced the fraction of resin gas below the Low Explosive Limit (LEL).

Radar rainfall prediction based on deep learning considering temporal consistency (시간 연속성을 고려한 딥러닝 기반 레이더 강우예측)

  • Shin, Hongjoon;Yoon, Seongsim;Choi, Jaemin
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.301-309
    • /
    • 2021
  • In this study, we tried to improve the performance of the existing U-net-based deep learning rainfall prediction model, which can weaken the meaning of time series order. For this, ConvLSTM2D U-Net structure model considering temporal consistency of data was applied, and we evaluated accuracy of the ConvLSTM2D U-Net model using a RainNet model and an extrapolation-based advection model. In addition, we tried to improve the uncertainty in the model training process by performing learning not only with a single model but also with 10 ensemble models. The trained neural network rainfall prediction model was optimized to generate 10-minute advance prediction data using four consecutive data of the past 30 minutes from the present. The results of deep learning rainfall prediction models are difficult to identify schematically distinct differences, but with ConvLSTM2D U-Net, the magnitude of the prediction error is the smallest and the location of rainfall is relatively accurate. In particular, the ensemble ConvLSTM2D U-Net showed high CSI, low MAE, and a narrow error range, and predicted rainfall more accurately and stable prediction performance than other models. However, the prediction performance for a specific point was very low compared to the prediction performance for the entire area, and the deep learning rainfall prediction model also had limitations. Through this study, it was confirmed that the ConvLSTM2D U-Net neural network structure to account for the change of time could increase the prediction accuracy, but there is still a limitation of the convolution deep neural network model due to spatial smoothing in the strong rainfall region or detailed rainfall prediction.

Influence of Transverse Reinforcement Elements for Flexural Strength of Lap Spliced Ultra-high-strength Reinforced Concrete Beams (겹침이음된 초고강도콘크리트 보의 휨강도에 횡방향보강 요소가 미치는 영향)

  • Bae, Baek-Il;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.135-142
    • /
    • 2022
  • In this study, lap spliced ultra-high strength reinforced concrete beams were tested and the code criteria for calculating the lap splice length which was affected by the transverse reinforcement and concrete covering performance were reviewed. The main variables for test were set as fiber volume fraction and transverse reinforcing bar arrangement to improve the confining performance of the concrete cover. The change of the confining performance of concrete cover according to the increase in the fiber mixing amount at 1% and 2% volume ratio was examined, and D10 stirrups with a spacing of 100 mm were placed in the lap spliced region. As a result of the test, the specimens confined by the stirrups showed a sudden drop of load bearing capacity with horizontal cracking at the position of tensile longitudinal reinforcement. However, horizontal cracks were not appeared at the location of longitudinal reinforcement for the specimens with steel fiber. And these specimens showed gradual decrease of load bearing capacity after experiencing peak load. In particular, it was found that the strain at the position of the tensile longitudinal reinforcements of the specimens to which the mixing ratio of 2% was applied exceeds the yield strain. As a result of measuring the strain on the concrete surface, it was found that the fiber was more effective in preventing damage to the concrete surface than the stirrups for short lap spliced region.

An experimental study of smoke extraction efficiency along with ventilation building location in the mad tunnel (도로터널 내 환기소 위치별 방재 효율에 관한 실험적 연구)

  • Rie, Dong-Ho;Kim, Ha-Young;Yoon, Chan-Hoon;Kim, Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.3
    • /
    • pp.215-222
    • /
    • 2010
  • An experimental study was carried out on a reduced scale model tunnel to investigate the efficiency of disaster prevention at underground and ground ventilation equipments for the fire in road tunnels. Based on Froude modeling, the 1/50 scaled model tunnel (20 m long) was manufactured. The vertical shafts that are used in the analysis of efficiency of disaster prevention are the two models that had considered when the real tunnels are designed and the amounts of smoke exhaust are applied the miniature of the real tunnels' smoke exhaust, 560 and $280\;m^3/s$. As the result of analysis, it is the possible the emissions of the entire quantity of CO gas through the vertical shafts. In the ground ventilation equipments, the concentration of CO is discharged 2.23~2,73 ppm smaller than the underground ventilation equipments. And the temperature rise in the ground ventilation equipments is $0.53{\sim}0.94^{\circ}C$ lower than in the underground ventilation equipments because of a cooling effect of the surface of the tunnel wall. As a result of analysis of CO concentration and the temperature rise in the modeling ventilation equipment, the position of ground ventilation equipment is more effective than the underground ventilation equipment in disaster prevention measures.

TNT Explosion Demonstration and Computational Fluid Dynamics for Safety Verification of Protection Wall in Hydrogen Refueling Station (수소충전소 방호벽 안전성 검증을 위한 TNT 폭발실증 및 전산유동 해석)

  • Yun-Young Yang;Jae-Geun Jo;Woo-Il Park;Hyon Bin Na
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.102-109
    • /
    • 2023
  • In realizing a hydrogen society, it is important to secure the safety of the hydrogen refueling station, which is the facility where consumers can easily meet hydrogen. The hydrogen refueling station consists of compressed gas facilities that store high-pressure hydrogen, and there is a risk that the high-pressure compressed gas facility will rupture due to a fire explosion due to hydrogen leakage in the facility or the influence of surrounding fires. Accordingly, the Korea Gas Safety Corporation is making every effort to find out risk factors from the installation stage, reflect them in the design, and secure safety through legal inspection. In this study, a TNT explosion demonstration test using a protection wall was conducted to confirm the safety effect of the protection wall installed at the hydrogen refueling station, and the empirical test results were compared and verified using FLACS-CFD, a CFD program. As a result of the empirical test and CFD analysis, it was confirmed that the effect of reducing the explosion over-pressure at the rear end of the protection wall decreased from 50% to up to 90% depending on the location, but the effect decreased when it exceeded a certain distance. The results of the empirical test and computer analysis for verifying the safety of the protection wall will be used in proposals for optimizing the protection wall standards in the future.

Prediction of Damages and Evacuation Strategies for Gas Leaks from Chlorine Transport Vehicles (염소 운송차량 가스누출시 피해예측 및 대피방안)

  • Yang, Yong-Ho;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.407-417
    • /
    • 2024
  • The objective of this study is to predict and reduce potential damage caused by chlorine gas leaks, a hazardous material, when vehicles transporting it overturn due to accidents or other incidents. The goal is to forecast the anticipated damages caused by chlorine toxicity levels (ppm) and to design effective response strategies for mitigating them. To predict potential damages, we conducted quantitative assessments using the ALOHA program to calculate the toxic effects (ppm) and damage distances resulting from chlorine leaks, taking into account potential negligence of drivers during transportation. The extent of damage from toxic gas leaks is influenced by various factors, including the amount of the leaked hazardous material and the meteorological conditions at the time of the leak. Therefore, a comprehensive analysis of damage distances was conducted by examining various scenarios that involved variations in the amount of leakage and weather conditions. Under intermediate conditions (leakage quantity: 5 tons, wind speed: 3 m/s, atmospheric stability: D), the estimated distance for exceeding the AEGL-2 level of 2 ppm was calculated to be 9 km. This concentration poses a high risk of respiratory disturbance and potential human casualties, comparable to the toxicity of hydrogen chloride. In particular, leaks in urban areas can lead to significant loss of life. In the event of a leakage incident, we proposed a plan to minimize damage by implementing appropriate response strategies based on the location and amount of the leak when an accident occurs.

The volcanic aspect on determining Site of nuclear power plant in Indonesia: Gap analysis between standard and regulations

  • Widjanarko;Budi Santoso;Rismiyanto;Kurnia Anzhar;Joko Waluyo;Gustini H. Sayid;Khusnul Khotimah;Nicholas Bertony Saputra;Agus Teguh Pranoto;Hadi Suntoko;Siti Alimah;Sriyana;Roni Cahya Ciputra;Alfitri Meliana
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2875-2880
    • /
    • 2024
  • The development of nuclear power plants is in three phases. The first phase is a consideration before the decision on the NPP construction program is approved, the second phase is the preparatory work for making contracts and preparing for the construction of NPP after the NPP construction policy is approved, and the third phase is contracting, licensing and building the first NPP. As a volcanically active country, Indonesia contains over 130 active volcanoes that are part of the Pacific Ring of Fire. The volcanic aspect is one of the safety factors considered while deciding the location of an NPP. Research on the potential of natural external risks to the determination of nuclear power plants in Indonesia, including the volcanic aspect, has been conducted based on the safety reference or safety guide of the IAEA and the Nuclear Energy Regulatory Body (BAPETEN) Regulation. Due to technological advancements, safety needs have evolved so the existing Indonesia National Standard (SNI) must be updated to comply with BAPETEN regulations. The substance in SNI 18-2034-1990 relating to volcanic features seems less relevant in actual conditions, given that more complete and exact criteria for determining a site guarantee the safety and health of residents and surrounding the environment site. The study intends to conduct a gap analysis of volcanic issues in SNI and volcanic regulations. The method used is identification requirements for volcanic aspects in SNI 18-2034-1990 about Determining Site of Nuclear Reactor Guidance with BAPETEN Chairman Regulation (BCR) number 4 of 2018 about Nuclear Installation Site Evaluation Safety Provisions and BCR number 5 of 2015 about Evaluation of Nuclear Installation Sites for Volcanic Aspects, and analysis uses a qualitative method of inductive techniques. The outcome of this research applies to suggesting a revision of SNI number 18-2034-1990, especially the volcanic aspect.

A Study on the Reliability Analysis and Risk Assessment of Liquefied Natural Gas Supply Utilities (천연가스 공급설비에 대한 기기신뢰도 분석 및 위험성 평가)

  • Ko, Jae-Sun;Kim, Hyo
    • Fire Science and Engineering
    • /
    • v.17 no.1
    • /
    • pp.8-20
    • /
    • 2003
  • Natural gas has been supplied through underground pipelines and valve stations as a new city gas in Seoul. In contrast to its handiness the natural gas has very substantial hazards due to fires and explosions occurring from careless treatments or malfunctions of the transporting system. The main objectives of this study are to identify major hazards and to perform risk assessments after assessing reliabilities of the composing units in dealing with typical pipeline networks. there-fore two method, fault tree analysis ;1nd event tree analysis, are used here. Random valve stations are selected and considered its situation in location. The value of small leakage, large rupture, and no supply of liquefied natural gas is estimated as that of top event. By this calculation the values of small leakage are 3.29 in I)C valve station, 1.41 in DS valve station, those of large rup-lure are $1.90Times10_{-2}$ in DC valve station, $2.32$\times$10^{-2}$ in DS valve station, and those of no supply of LNG to civil gas company are $2.33$\times$10 ^{-2}$ , $2.89$\times$10^{-2}$ in each valve station. And through minimal cut set we can find the parts that is important and should be more important in overall system. In DC valve station one line must be added between basic event 26,27 because the potential hazard of these parts is the highest value. If it is added the failure rate of no supply of LNG is reduced to one fourth. In DS valve station the failure rate of basic event 4 is 92eye of no supply of LNG. Therefore if the portion of this part is reduced (one line added) the total failure rate can be decreased to one tenth. This analytical study on the risk assessment is very useful to prepare emergency actions or procedures in case of gas accidents around underground pipeline networks and to establish a resolute gas safety management system for loss prevention in Seoul metropolitan area.