• Title/Summary/Keyword: Fire load

Search Result 515, Processing Time 0.027 seconds

Implementation of Dynamic Context-Awareness Platform for Internet of Things(IoT) Loading Waste Fire-Prevention based on Universal Middleware (유니버설미들웨어기반의 IoT 적재폐기물 화재예방 동적 상황인지 플랫폼 구축)

  • Lee, Hae-Jun;Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1231-1237
    • /
    • 2022
  • It is necessary to dynamic recognition system with real time loading height and pressure of the loading waste, the drying of wood, batteries, and plastic wastes, which are representative compositional wastes, and the carbonization changes on the surface. The dynamic context awareness service constituted a platform based on Universal Middleware system using BCN convergence communication service as a Ambient SDK model. A context awareness system should be constructed to determine the cause of the fire based on the analysis data of fermentation heat point with natural ignition from the load waste. Furthermore, a real-time dynamic service platform that could be apply to the configuration of scenarios for each type from early warning fire should be built using Universal Middleware. Thus, this issue for Internet of Things realize recognition platform for analyzing low temperature fired fire possibility data should be dynamically configured and presented.

Effect of Earthquake characteristics on seismic progressive collapse potential in steel moment resisting frame

  • Tavakoli, Hamid R.;Hasani, Amir H.
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.529-541
    • /
    • 2017
  • According to the definition, progressive collapse could occur due to the initial partial failure of the structural members which by spreading to the adjacent members, could result in partial or overall collapse of the structure. Up to now, most researchers have investigated the progressive collapse due to explosion, fire or impact loads. But new research has shown that the seismic load could also be a factor for initiation of the progressive collapse. In this research, the progressive collapse capacity for the 5 and 15-story steel special moment resisting frames using push-down nonlinear static analysis, and nonlinear dynamic analysis under the gravity loads specified in the GSA Guidelines, were studied. After identifying the critical members, in order to investigate the seismic progressive collapse, the 5-story steel special moment resisting frame was analyzed by the nonlinear time history analysis under the effect of earthquakes with different characteristics. In order to account for the initial damage, one of the critical columns was weakened at the initiation of the earthquake or its Peak Ground Acceleration (PGA). The results of progressive collapse analyses showed that the potential of progressive collapse is considerably dependent upon location of the removed column and the number of stories, also the results of seismic progressive collapse showed that the dynamic response of column removal under the seismic load is completely dependent on earthquake characteristics like Arias intensity, PGA and earthquake frequency contents.

A Review on Practical Use of Simple Analysis Method based on SDOF Model for the Stiffened Plate Structures subjected to Blast Loads (폭발하중을 받는 보강판 구조물의 간이 해석법에 대한 실용성 검토)

  • Kim, Ul-Nyeon;Ha, Simsik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.70-79
    • /
    • 2020
  • The offshore installation units may be subjected to various accidental loads such as collision from supply vessels, impact from dropped objects, blast load from gas explosion and thermal load from fire. This paper deals with the design and strength evaluation method of the stiffened plate structures in response to a blast load caused by a gas explosion accident. It is a comprehensive review of various items used in actual project such as the size and type of the explosive loads, general design procedure/concept and analysis method. The structural analyses using simple analysis methods based on SDOF model and nonlinear finite element analysis are applied to the particular FPSO project. Also validation studies on the design guidance given by simple analysis method based on SDOF model have also considered several items such as backpressure effects, material behavior and duration time of the overpressure. A good correlation between the prediction made by simple analysis method based on SDOF model and nonlinear finite element analysis can be generally obtained up to the elastic limit.

A Study on the Uninterruptible Power Open Phase Compensation Device (무정전 결상 보상장치에 관한 연구)

  • Song, Young-Joo;Oh, Jin-Tack;Kim, Na-Un;Shin, Hye-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.75-81
    • /
    • 2014
  • It has been widely accepted that open phase may separate one of the power lines from power supply which is mainly caused by fuse melting, malfunction for source circuit breaker, contact failure, and disconnection under normal operating conditions, and is considered a kind of failure mode during disconnection of neutral wires as well. When open phase occurs, unequal voltage between phase might happen in the unbalanced load connected each phase, and further, depending on conditions of load, malfunction by providing low voltage. Moreover, load could be burned or overheated with overvoltage, which, in turn, can be a contributor to starting fires. Accordingly, in order to clearly overcome these problems, the current study aims to introduce the theory of uninterruptible power open phase compensation device, meaning that unbalanced power automatically restores balanced power and provides continuously the power supply without blackout, and verify it through simulation and experiments.

Evaluation of Performance and Reliability of a White Organic Light-Emitting Diode(WOLED) Using an Accelerated Life Test(ALT) (가속수명시험(ALT)을 이용한 WOLED의 성능 및 신뢰성 평가)

  • Moon, Jin-Chel;Park, Hyung-Ki;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.13-19
    • /
    • 2012
  • The purpose of this study is to extract the major factors related to the deterioration mechanism of white organic light-emitting diodes(WOLED) by performing accelerated testing of temperature, voltage, time, etc., and to develop an accelerated life test(ALT) model. The measurement results of the brightness of the WOLED exhibited that their average brightness tended to increase as the operating voltage increased and that the half-life period of the brightness appeared after approximately 400 hours when the operating voltage was 20V and the ambient temperature was $85^{\circ}C$. It could be seen that although the WOLED showed comparatively the same brightness when the initial acceleration began after the operating voltage was applied to it, its brightness changed excessively after the WOLED's thermal storage had been made. In addition, it was observed that the half-life period was reduced as the ambient temperature and applied voltage increased. The strength of the WOLED which had been maintained in the range of visible light at the maximum load was reduced by the deterioration of the organic light emitting material due to the influence of the operating voltage and temperature, and the reduction of emitted light was small at low voltage and temperature. It could be seen that the failure of the WOLED during the ALT was caused by wear due to load accumulation over time, and that Weibull distribution was appropriate for the life distribution and acceleration was established between test conditions. From the WOLED analysis, it is thought that factors influencing the brightness deterioration are voltage, temperature, etc., and that comprehensive analysis considering discharge control, dielectric tangent margin, etc., would further increase the reliability.

A Study on the Development of a Work Operation Process Chart for Smart Distribution Board Fabrication (스마트 분전반 제작을 위한 작업 공정도 개발에 관한 연구)

  • Lee, Byung-Seol;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.15-20
    • /
    • 2017
  • This study presented the strength of the materials and parts for smart distribution board fabrication, and developed a work operation process chart for smart distribution board fabrication. This work operation process chart for smart distribution board fabrication complied with SPS-KEMC regulations, and the applicable range and object are less than 1,000 V and 1,000 Hz for the AC distribution board and less than 1,500 V for the DC distribution board. The power supply is 3 phase 4 wires ($3{\Phi}$ 4W), divided into a single phase circuit and a 3 phase circuit. In addition, the circuit was configured so that the leakage current flowing through the distribution line of the load could be monitored in real time by using the sensor module installed at the rear end of the circuit breaker. Therefore, the administrator can easily find the risk factor of the load since engineer can check the leakage current of each distribution line. In addition, if a leakage current greater than standard value flows, it is possible to generate an alarm against a short circuit and cut off the leakage current. The work operation process chart for the smart distribution board fabrication consists of the following steps: raw and subsidiary materials, sheet metal work, tube making, welding, painting, busbar fabrication, assembly and wiring, product inspection, shipment, etc. Moreover, symbols, ${\Delta}$, ${\nabla}$, ${\bigcirc}$, ${\Rightarrow}$, etc. were used according to the type of work and work progress so that workers can easily understand the progress of the work.

IoT Platform System for Electric Fire Prediction and Prevention (전기화재 예측 및 예방을 위한 IoT 플랫폼 시스템)

  • Yang, Seungeui;Lee, Sungock;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.223-229
    • /
    • 2022
  • During the winter season, when the weather gets colder every year, electricity consumption increases rapidly. The occurrence of fires is increasing due to a short circuit in electrical facilities of buildings such as markets, bathrooms, and apartments with high population density while using a lot of electricity. The cause of these short circuit fires is mostly due to the aging of the wires, the usage increases, and the excessive load cannot be endured, and the wire sheath is melted and caused by nearby ignition materials. In this paper, the load and overheat generated in the electric wire are measured through a complex sensor composed of an overload sensor, a VoC sensor, and an overheat sensor. Based on this, big data analysis is carried out to develop a platform capable of predicting, alerting, and blocking electric fires in real time, and a simulator capable of simulated fire experiments.

A Study on Beam Operation of an Airborne AESA Radar with Uniform Search Performance in Whole Scan Area (전 탐색 영역 균일 성능을 갖는 항공기 탑재 능동 위상 배열 레이더의 빔 운용 연구)

  • Ahn, Chang-Soo;Roh, Ji-Eun;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.740-747
    • /
    • 2012
  • An Active Electronically Scanned Array(AESA) radar required necessarily as the Fire Control Radar(FCR) of recent fighters has ununiform detection range with regard to scan angle due to scan loss. Although the compensation method of scan loss in an AESA radar with variable dwell time is investigated, the effectiveness of the method in a fighter FCR with multi-function such as search, track, and missile guidance within limited resources should be considered systematically. In this paper, uniform search performance of an AESA radar using variable dwell time with regard to scan angle is derived. We assumed the search load of 50 % for case without changing dwell time in fixed frame time and showed the fighter FCR requirement for multi-function is not satisfied because the search load for the uniform search performance should be increased by about 100 %. On the other hand, in case of increasing the frame time for the uniform search performance and search load of 50 %, degradation of the search performance is shown by 86.7 % compared with the former. Based on these analyses, the effective beam operation strategy on an airborne AESA radar with uniform search performance in whole scan area is described with consideration of frame time, search load and performance as a whole.

Prediction of Occupant Load Density using People Counting System in Discount Stores (무인계수시스템을 이용한 대형할인점의 재실자밀도 예측)

  • Seo, Dong-Goo;Hwang, Eun-Kyoung
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.53-59
    • /
    • 2017
  • The purpose of this study is to verify the suitability of the current standards by predicting the density of the occupant load density for discount stores. An internal data survey as well as an actual survey using a People Counting System (PCS) were employed to ascertain the number of occupants and 95% confidence interval of nationwide discount stores. According to the results of the actual survey, the time and days on which the maximum number of occupants were reached was from 16:00 to 18:00 and Christmas Eve and the weekend before New Year's Day, respectively. From the results of the maximum number of occupants, a regression equation was derived from the relationship between the internal data and the amount of sales, and this equation was verified in a previous study. Thus, the internal data of 50 discount stores were analyzed using this process. As a result, the 95% confidence interval was determined to be $2.7{\sim}2.9m^2/pers.$ and the error level was not large compared to the domestic and foreign standards. Therefore, this study proposes that a conservative estimate of the standard occupant load density for discount stores is $2.7m^2/pers.$

An Experimental Study on the Vibration and Fire Resistance of Steel Void Deck Plate Slab for Omega-steel plate (오메가형 강판을 중공체로 사용한 데크플레이트 슬래브의 진동 및 내화에 관한 실험적 연구)

  • Kim, Sang-Seup;Ryu, Deog-Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.705-713
    • /
    • 2011
  • This study was conducted to assess the vibration capacity and the fire resistance capacity of a deck plate slab using an omega steel plate as the void deck plate. First, to evaluate the vibration capacity of the deck plate slab after the insertion of the omega steel plate, three 150mm specimens and three 200mm specimens were made using the slab depth as the main variable. Each specimen consisted of an existing deck plate and two specimens, using the topping depth as the variable according to the slab depth. Second, two real-size specimens were made to evaluate the fire resistance capacity. The results of the test showed that the steel-wire-integrated deck plate slab that was inserted in the omega steel plate did not have a vibration problem due to the void deck plate, because the natural frequency was 12.66-14.09 Hz in the vibration test, and each specimen satisfied the appraisal standards for the load capacity, heat block quality, and chloride inhibition for two hours in the fire resistance test. Consequently, the steel-wire-integrated deck plate slab that was inserted in the omega steel plate can be reduced using the concrete volume and can have higher vibration and fire resistance capacities, similar to the existing deck plate.