• Title/Summary/Keyword: Fire conditions

Search Result 963, Processing Time 0.028 seconds

Study of the Perfomance Estimation for (Semi)Incombustible Composite ((준)불연성 복합재료의 성능 평가 연구)

  • 조정미;장기욱;김규직
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.97-101
    • /
    • 2001
  • Composite materials have been applied widely in interior panels of buildings and transport vehicles. Recently good fire performance and weight reduction are key issues in the fields. In the present study we investigated effects of processing parameters on the performance of honeycomb sandwich panels, especially peel strength of the panel and fire performance. The processing parameters considered were types of matrix resin, resin contents, panel cure conditions, and surface painting process conditions. The results showed that the higher resin content provides the better peel strength. Controled cure steps are also needed to obtain good pee] strength. Paint processing parameters including base putty thickness and paint drying conditions and paint thickness are important to obtain good paint adhesion and good fire performance.

  • PDF

A Study on the Actual Conditions of Safety Management in Thermal Oil System (열매체유 시스템의 안전관리 실태에 관한 연구)

  • Lee, Joo Yeob;Lee, Keun Won;Woo, In Sung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.60-66
    • /
    • 2014
  • Depending on the progress of the industrial advances, the use of the thermal oil system in the utility system has been increased, which became an important part in the operation of the plant. However, fire or explosion have occurred due to lack of risk awareness and safety management, more frequently than we know. In this study, by using a questionnaire, actual conditions of safety management in thermal oil system is surveyed and analyzed, it is composed of general, a safety status of the thermal oil system component and the stage of recognition and management in the thermal oil system. These results of this study can be used as basic data to the safety management and the accident prevention of fire or explosion in the workplace.

A Study on the Effective Fire and Smoke Control in Road-Tunnel with Semi-Transverse Ventilation (도로터널 화재시 대배기구 환기방식에서의 배연 연구)

  • Jeon, Yong-Han;Han, Sang-Cheol;Yoo, Oh-Ji;Kim, Nam-Jin;Seo, Tae-Boem;Kim, Jong-Yoon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1244-1250
    • /
    • 2009
  • In this study it is intended to review the moving characteristics of smoke by performing visualization for the calculation of the optimal smoke exhaust air volume in case a fire occurs in tunnels where transverse ventilation is applied, and to obtain basic data necessary for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions under various conditions. As a result of this study, when the critical velocity in the tunnel is 1.75 m/s and 2.5 m/s, the optimal smoke exhaust air volume has to be more than $173\;m^3/s$, $236\;m^3/s$ for the distance of the smoke moving which can limit the distance to 250m. In addition, in case of uniform exhaust the generated smoke is effectively taken away if the two exhaust holes near the fire region are opened at the same time.

  • PDF

Forest Fire Risk Zonation in Madi Khola Watershed, Nepal

  • Jeetendra Gautam
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.1
    • /
    • pp.24-34
    • /
    • 2024
  • Fire, being primarily a natural phenomenon, is impossible to control, although it is feasible to map the forest fire risk zone, minimizing the frequency of fires. The spread of a fire starting in any stand in a forest can be predicted, given the burning conditions. The natural cover of the land and the safety of the population may be threatened by the spread of forest fires; thus, the prevention of fire damage requires early discovery. Satellite data and geographic information system (GIS) can be used effectively to combine different forest-fire-causing factors for mapping the forest fire risk zone. This study mainly focuses on mapping forest fire risk in the Madikhola watershed. The primary causes of forest fires appear to be human negligence, uncontrolled fire in nearby forests and agricultural regions, and fire for pastoral purposes which were used to evaluate and assign risk values to the mapping process. The majority of fires, according to MODIS events, occurred from December to April, with March recording the highest occurrences. The Risk Zonation Map, which was prepared using LULC, Forest Type, Slope, Aspect, Elevation, Road Proximity, and Proximity to Water Bodies, showed that a High Fire Risk Zone comprised 29% of the Total Watershed Area, followed by a Moderate Risk Zone, covering 37% of the total area. The derived map products are helpful to local forest managers to minimize fire risks within the forests and take proper responses when fires break out. This study further recommends including the fuel factor and other fire-contributing factors to derive a higher resolution of the fire risk map.

An Experimental Study on the Engineering Properties of Deteriorated Concrete by Fire Damage According to Curing Conditions (화재피해를 입은 콘크리트의 폭력에 대한 양생조건의 영향성 검토에 관한 연구)

  • Na, Chul-Sung;Kim, Young-Sun;Kim, Jae-Hwan;Kwon, Yung-Jin;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.557-560
    • /
    • 2006
  • In the existed study, a fire outbreak in a reinforced concrete structure looses the organism by the different contraction and expansion of hardened cement pastes and aggregate, and causes cracks by thermal stress, leading to the deterioration of the durability. So accurate diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the properties of concrete exposed to high temperature are necessary for accurate diagnosis of deterioration. Therefore, this study is willing to propose fundamental data for accurate diagnosis of deteriorated concrete structure by fire damage with experiment according to the curing conditions.

  • PDF

Parameter Effects on the Time to Reach Flashover Conditions in Single Room Fires (건물화재의 플래시오버 도달 시간에 영향을 미치는 인자들에 관한 연구)

  • Kim, Hyeong-Jin;Lilley, David-G.;Baek, Byung-Joon;Pak, Bock-Choon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1384-1388
    • /
    • 2003
  • In structural fires, flashover is characterized by the rapid transition in fire behavior from localized burning of fuel to the involvement of all combustibles in the enclosure. An investigation of parameter effects on the time to reach flashover conditions in a typical single room fire is undertaken using a zone method (FAST) and Thomas method. Major parameters affecting the time to reach flashover are found to be fire growth rate, ventilation opening area and internal room surface. The results of the FAST and the Thomas Method give very similar results of the time to reach flashover..

  • PDF

An Experimental Study of Flow Behaviour in Underground Stairway Fire (지하계단 화재에서 유동에 대한 실험연구)

  • 정진용;홍기배;이재하;유홍선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.821-827
    • /
    • 2003
  • Reduced-scale experimental study was carried out on the heat flow behavior which flows under the sloped ceiling in underground fire. Temperature and flow velocity were measured to characterize the ceiling jet along the sloped stairway ceiling. The methanol fuel was used as a model fire source giving 2.2 and 3.4 kW, with changing the slope angle of stairway adopting of 15, 25, 35, and 45 deg. Based on the experimental data, excess temperature and velocity along the sloped stairway ceiling were examined which are usefully applicable to estimate the activating conditions of heat detector and sprinkler head mounted on the sloped ceiling. Excess temperature in upper exit of the sloped stairway was also examined to analyze the soffit which delays the smoke diffusion. The result shows that the activating conditions of heat detector and sprinkler in the sloped stairway ceiling have to be considered differently in a point of about 30 deg.

A Study on the Performance Characteristic of a Fire Pump with Various Operating Conditions (운전조건 변화에 따른 소방펌프 성능특성 연구)

  • Park, Sung-Kyu;Noh, Go-Sub;Kim, Yun-Je
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2011-2016
    • /
    • 2004
  • In order to develop a high efficiency fire pump, its performance characteristics with various operating conditions are investigated. The governing equations are derived from making using of three-dimensional Navier-Stokes equations with the standard ${\kappa}-{\varepsilon}$ turbulence model and SIMPLE algorithm. Using a commercial code, CFX, pressure distribution and flow fields in a fire pump are calculated with various ranges of rotating speed 800-2400 rpm. Particularly, calculations with multiple frames of reference method between the rotating and stationary parts of the domain are carried out. With the help of numerical results, correlation formula between the casing pressure and the efficiency is derived.

  • PDF

Full-scale Fire Suppression Test for Application of Water Mist System in Road Tunnel (미분무수 소화시스템의 도로터널 적용을 위한 실물 화재 실험)

  • Han, Yong-Shik;Choi, Byung-Il;Kim, Myung-Bae;Lee, Yu-Whan;So, Soo-Hyun
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.51-56
    • /
    • 2011
  • The full-scale experiments are carried out to investigate the fire suppression characteristics of water-based fire fighting systems in a road tunnel. Applied systems are the low-pressure water spray system at 3.5 bar and the high-pressure water mist system at 60 bar. The water flow rate of the high-pressure system is one sixth only of the water spray system. A passenger car and a heptane fuel pan with area of $1.4m^2$ are used as fire sources. A blower system is installed at the tunnel exit to realize the longitudinal ventilation conditions (0.9~3.8 m/s) in the tunnel. Temperatures from the fire source to the down-stream direction are measured by K-type thermocouple trees. The experimental results show that the cooling effect of the high pressure water mist system in the test conditions were equivalent to that of the low pressure water spray system for B-class fire.

Analysis of Structural and Thermal Parameters for Evaluating Fire Resistance of Steel Beams (철골보의 내화시간 평가를 위한 구조 및 열적 변수해석)

  • Park, Han Na;Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.609-618
    • /
    • 2009
  • This paper proposes a versatile formula which can be used to evaluate the fire resistant time of steel beams under various design conditions. Towards this end, the key parameters which affect the fire performance of steel beams were first determined through thermo-mechanical considerations, and classified into two groups: structural parameters and thermal parameters. Then the degree of influence of each parameter on the fire performance was investigated through a fully coupled thermo-mechanical analysis up to the occurrence of run-away deflection. The accuracy of the numerical model used was verified using an available full-scale fire test before conducting an extensive parametric analysis. Multiple linear regression analysis was performed to obtain the formula which can be used to predict the fire resistance time of steel beams under various design conditions. The statistical analysis showed that the proposed formula is very robust. The application of the formula in practical fire design under the current code was illustrated in detail. The economy and other advantages of the proposed formula were clearly shown.