• Title/Summary/Keyword: Fire and Explosion Properties

Search Result 96, Processing Time 0.034 seconds

A Study on the Spalling Properties of High Strength Concrete Using Synthetic Fiber (유기섬유를 혼입한 고강도 콘크리트의 폭렬 특성에 관한 실험적 연구)

  • Jeon, Chan Ki;Jeon, Joong Kyu
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.1
    • /
    • pp.18-26
    • /
    • 2012
  • Accordingly architectural structure is getting high-rise and bigger, a use of high strength and high performance concrete has been increasing. High performance concrete has cons of explosion in a fire. This Explosion in the fire can cause the loss of the sheath on a concrete surface, therefore it effects that increasing a rate of heat transmission between the steel bar and inner concrete. Preventing this explosion of high performance concrete in the fire, many kinds of researches are now in progressing. Typically, researches with using Polypropylene-fiber and Steel-fiber can prove controling the explosion, but the reduction of mobility was posed as a problem of workability. Consequently, to solve the problem as mentioned above, concrete cans secure fire resisting capacity through the using of coating liquid, including Ester-lubricant and non-ionic characteristic surfactant. This research has been drawn a ideal condition in compressive strength areas of concrete by an experiment. When applying 13mm of polyamide-fiber, proper fiber mixing volume by compressive strength areas of concrete is $0.8kg/m^3$ in 60MPa, $1.0kg/m^3$ in 80MPa, $1.5kg/m^3$ in $100MPa/m^3$. These amount of a compound can control the explosion.

Measurement and Investigation of Combustible Properties of n-Heptane for Risk Assessment of Gasoline Tank (가솔린탱크의 위험성평가를 위한 노말헵탄의 연소특성치 측정 및 고찰)

  • Ha, Dong-Myeong;Jeong, Kee-Sin;Lee, Sung-Jin;Cho, Yong-Sun;Yoon, Myung-O
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.76-81
    • /
    • 2010
  • For the safe handling of n-heptane, the explosion limit at $25^{\circ}C$, the temperature dependence of the explosion limits and the lower flash point were investigated. And AITs (auto-ignition temperatures) by ignition time delay for n-heptane were experimented. By using the literatures data, the lower and upper explosion limits of n-heptane recommended 1.0 Vol% and 7.0 Vol%, respectively. And the lower flash points of n-heptane recommended $-4^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for n-heptane and the experimental AIT of n-hexane was $225^{\circ}C$. The new equation for predicting the temperature dependence of the explosion limits of n-heptane is proposed. The values calculated by the proposed equations were a good agreement with the literature data.

A Study on the Properties of the Heavy Duty Rust-Converting Agent used in the Potential Hazard Areas of Fire & Explosion (잠재적 화재.폭발 위험 지역 작업용 녹전환형 중방식 코팅제의 특성에 관한 연구)

  • 강영구
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.102-111
    • /
    • 1998
  • This study was concerned with the development of a heavy duty rust-converting agent, the function of which is to form metal complex coatings, containing vinyl halide-acrylic terpolymer emulsion, defoamer, emulsifying agent, glass flakes, chelating agent such as gallotannic acid, gallic acid, and pyrogallic acid, and other additives. The resulted emulsion products(Sample No.1~No.5) were characterized through test either in the forms of emulsions, which include Viscosity, Penetration rate, Acidity and Film drying rate test, or in the forms of coated layer on rusty steel substrates by FT-IR, which include hardness, gloss, salt spray, adhesion and flame retardant test. The test results are as follows ; Penetration rate(0.1~0.4 mm/min), Solid content(70%), Acidity (pH 1.8~2.0), Specific gravity(1.30~1.35), Film drying rate(108min, RH 40% ; 150min, RH 80%), Gloss(83~92, incident angle $60^{\circ}$; 88~97, incident angle $85^{\circ}$), Pencil hardness(4H~5H), Adhesion (100/100), Salt spray test(>720Hr), LOI(%) value(38%), Vertical burning test(UL 94-v-l). According to the various performance of specimens show above, the evaluation of the availability of this heavy duty rust-converting agent can be concluded that all the samples(No.1~No.5) are capable of being used in the field of chemical plant and in the hazard areas of fire and explosion potential. It was observed that the properties of sample No.2, especially gloss and hardness, were much better than that of the other samples.

  • PDF

A Study on Explosive Limits of Flammable Materials - Explosive Limits of Flammable Binary liquid Mixture by Liquid Phase Compositions - (가연성물질의 폭발한계에 관한 연구 - 액상 조성에 의한 가연성 2성분 액체혼합물의 폭발한계 -)

  • 하동명
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.103-108
    • /
    • 2001
  • Explosive limit is one of the major physical properties used to determine the fire and explosion hazards of the flammable substances. Explosive limits are used to classify flammable liquids according to their relative flammability. Such a classification is important for the safe handling of flammable liquids which constitute the solvent mixtures. Explosive limits of all compounds and solvent mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Dalton, Le Chatelier and activity coefficient models. In this paper, Raoult,s law and van Laar equation(activity coefficient model) are shown to be applicable for the prediction of the explosive limits in the flammable ethylacetate-toluene system. The values calculated by the proposed equations were a good agreement with literature data within a given percent. From a given results, by the use of the proposed equations, it is possible to predict explosive limits of the other flammable mixtures. It is hoped eventually that this method will permit the estimation of the explosive Properties of flammable mixtures with improved accuracy and the broader application for other flammable stances.

  • PDF

The Measurement of Combustible Properties of Acetic Anhydride for the Compatibility of MSDS (MSDS 적정성을 위한 아세틱안하이드리드의 연소특성치 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.85-90
    • /
    • 2014
  • For the safe handling of acetic anhydride, this study was investigated the explosion limits of acetic anhydride in the reference data. And the lower flash points, upper flash points, and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower and upper explosion limits of acetic anhydride by the investigation of the literatures recommended 2.9 Vol% and 10.3 Vol.%, respectively. The lower flash point of acetic anhydride by using Setaflash closed-cup tester was experimented $49^{\circ}C$. The lower flash point acetic anhydride by using Tag and Cleveland open cup tester were experimented $55^{\circ}C$and $62^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for acetic anhydride. The experimental AIT of acetic anhydride was $350^{\circ}C$.

Measurement and Prediction of Autoignition Temperature (AIT) and Ignition Delay Time of n-Pentanol and p-Xylene Mixture (n-Pentanol p-Xylene 과 혼합물의 최소자연발화온도와 발화지연시간의 측정 및 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.1-6
    • /
    • 2017
  • The fire and explosion properties of combustible materials are necessary for the safe handling, storage, transportation and disposal. Typical combustion characteristics for process safety include auto ignition temperature(AIT). The AIT is an important index for the safe handling of combustible liquids. The AIT is the lowest temperature at which the material will spontaneously ignite. In this study, the AITs and ignition delay times of n-pentanol and p-xylene mixture were measured by using ASTM E659 apparatus. The AITs of n-pentanol and p-xylene which constituted binary system were $285^{\circ}C$ and $557^{\circ}C$, respectively. The experimental AITs and ignition delay times of n-pentanol and p-xylene mixture were a good agreement with the calculated AITs and ignition delay times by the proposed equations with a few A.A.D. (average absolute deviation). Therefore, it is possible to estimate the AITs and ignition delay times in other compositions of n-pentanol and p-xylene mixture by using the predictive equations which presented in this study.

Measurement of Fire Point and Flash Point for Alcohols Using Tag Open-Cup Apparatus (Tag식 개방계 장치를 이용한 알콜류의 인화점 및 연소점 측정)

  • Ha Dong-Myeong;Lee Sung-Jin;Song Young-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.69-73
    • /
    • 2004
  • The flash point is one of the most important combustible properties used to determine the potential for the fire and explosion hazards of industrial material and the fire point is the temperature of the flammable liquid at which there will be flaming combustion, sustained 5 seconds in response to the pilot flame. In this study, the flash point and fire point were measured to present raw data of the flammable risk assessment for alcohols, using Tag open-cup apparatus(ASTM D 1310-86). The measured values were compared with the calculated values based on 0.78 times stoichiometric concentration. The values calculated by the proposed equations were in good agreement with the measured values.

A Research on the Shotcrete Tunnel Application to Concrete mixing PET Fiber (PET FIBER를 혼입한 콘크리트의 숏크리트 터널 적용에 관한 연구)

  • Kim, Joo-Seok;Yoo, Sang-Geon;Lee, Yong-Jun;Shin, Hyum-Seong;Kim, Eun-Kyum
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.928-934
    • /
    • 2008
  • Resently, Fiber Reinforced Concrete is used for not only preventing crack of concrete but also reinforcing general methods. Steel Fiber and PP(poly-propylene) Fiber are usually used as fiber reinforced materials. However, using these materials for shotcrete on Railway tunnel can cause some problems such as damage of pressure hose and shotcrete rebound. In addition, Steel fiber is an expensive material and it can cause safety problems during applying to shotcrete. PP Fiber can cause a problem in fiber balling during applying to shotcrete railway tunnel construction. A purpose of the research is applying a development of PET(Poly Etylene Terephtalate) fiber by recycling pet bottles to the shotcrete tunnel exposed to explosion spalling. To investigate the reinforcement effect of the PET fiber, some basic tests are accomplished to physical properties and explosion spalling by fire. As a result of the tests, a concrete mixing the PET fiber has stronger resistance effect in the explosion spalling by high temperature than another strong fiber concrete does, and that the former concrete is also equal or more effective on the result of the above tests to physical properties like compression and strain than the latter one is demonstrated.

  • PDF

The Prediction and Measurement of Combustible Properties for Bromobenzene (브로모벤젠의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.21-25
    • /
    • 2015
  • The usage of the correct combustion characteristics of the treated substance for the safety of the process is critical. For the safe handling of bromobenzene being used in various ways in the chemical industry, the flash point and the autoignition temperature (AIT) of bromobenzene was experimented. And, the lower explosion limit of bromobenzene was calculated by using the lower flash point obtained in the experiment. The flash points of bromobenzene by using the Setaflash and Pensky-Martens closed-cup testers measured $44^{\circ}C$ and $50^{\circ}C$, respectively. The flash points of bromobenzene by using the Tag and Cleveland automatic open cup testers are measured $56^{\circ}C$ and $64^{\circ}C$. The AIT of bromobenzene by ASTM 659E tester was measured as $573^{\circ}C$. The lower explosion limit by the measured flash point $44^{\circ}C$ was calculated as 1.63 Vol%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

Measurement and Prediction of Fire and Explosion Properties of 3-Hexanone (3-헥사논의 화재 및 폭발 특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.33-38
    • /
    • 2013
  • For the safe handling of 3-hexanone(ethyl propyl ketone), this study was investigated the explosion limits of 3-hexanone in the reference data. The flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash points of 3-hexanone by using closed-cup tester were experimented at $18^{\circ}C$. The lower flash points of 3-hexanone by using open cup tester were experimented in $27^{\circ}C{\sim}32^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for 3-hexanone. The experimental AIT of 3-hexanone was at $425^{\circ}C$. The lower explosion limit( LEL) by the measured lower flash point of 3-hexanone was calculated as 1.21 Vol%.