• Title/Summary/Keyword: Fire Model

Search Result 1,374, Processing Time 0.023 seconds

Feasibility Study on the Fire Scenario Design of a Couch Burning through a Fire Spread Model (화염 전파모델을 이용한 소파화재 설계화원구성의 적용성 연구)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.37-42
    • /
    • 2016
  • The present study has been performed to examine the feasibility of a flame spread model on the design fire scenario for fire risk analysis. Thermo-Gravimetric analysis and sample burning test were conducted to obtain the material properties of a single couch covered with synthetic leather material and a series of FDS calculations applying with the measured material properties were performed for different grid sizes. The overall fire growth characteristics predicted by the fire model were quite different from the results of a real scale fire test and the initial peak value of the HRR and total released energy showed the results within a 30% discrepancy for the computational grids used in the present study. The current model has some limitations in predicting the fire growth characteristics, such as fire growth rate and the time to the maximum HRR. This study shows that the fire model may be applicable to creating the design fire scenario through continuous model improvement and detailed material properties.

Performance Assessment Model for Fire Safety Protection of Office Building (사무소 건축물의 화재안전 성능 평가모델)

  • Yang, Eun-Bum;Hwang, Young-Sam;Lee, Chan-Sik
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.69-74
    • /
    • 2004
  • This study is to suggest a performance assessment model for fire safety protection of office building 34 asessment elements were chosen by interviewing with experts, reviewing several codes and existing relevant models, assessment elements included in this model are comprised of five categories which are 'performace of protected area', 'performance of fire partition', 'safety performance of fire escape', 'performace of smoke control system' and 'performace of fire fighting equipment'. The weight of each element was computed by systematic approach like an AHP (analytical hierarchy process), which was conducted by experts who work in the field of fire protection. This model would be utilized as a part of assessment model for the overall performace of domestic office building.

A Development of Assessment Model for Maintenance of Type R Fire Alarm System in the Building

  • Lee, Su-Kyung;Yoo, Sang-Bin;Nam, Yang-Won
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.633-640
    • /
    • 1997
  • Type R fire alarm is required intelligent buildings and height buildings which was based on automatic system. But in Korea, maintenance of fire alarm system is very poor. In this study, we developed assessment model for the type R fire alarm system which was assessed by using 96 checklist items. The assessment model was tested through the actual 4 buildings with type R fire alarm system. It is shown that present model can be applied for the assessment of all buildings through the examination of the suitability of assessment model by actual assessment. Also, it was made easily fire manager to carry out checklist for type R fire alarm system in buildings.

  • PDF

Sensitivity Analysis for Fire Risk Conditions of Fire Area at Nuclear Power Plant with Performance-based Fire Model (FDS) (성능기반 화재모델(FDS)을 이용한 원전 방화지역 화재위험 분석조건에 대한 민감도 해석)

  • Jee, Moon-Hak;Lee, Byung-Kon;Jeoung, Rae-Hyuck
    • Fire Science and Engineering
    • /
    • v.21 no.2 s.66
    • /
    • pp.98-104
    • /
    • 2007
  • This study is related with the fire risk assessment for fire area at nuclear power plant by use of FDS (Fire Dynamics Simulator) that is a computational fluid dynamics (CFD) model of fire-driven fluid flow. The major purpose of this research is to analyze the sensitivity of the fire modeling when the heat release rate that is an important input variable is changed as well as when the grid size that is a critical factor of the fire model is modified. The result is presented at the conclusion with some comments for CFD model application.

Practical modeling and quantification of a single-top fire events probabilistic safety assessment model

  • Dae Il Kang;Yong Hun Jung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2263-2275
    • /
    • 2023
  • In general, an internal fire events probabilistic safety assessment (PSA) model is quantified by modifying the pre-existing internal event PSA model. Because many pieces of equipment or cables can be damaged by a fire, a single fire event can lead to multiple internal events PSA initiating events (IEs). Consequently, when the fire events PSA model is quantified, inappropriate minimal cut sets (MCSs), such as duplicate MCSs, may be generated. This paper shows that single quantification of a hypothetical single-top fire event PSA model may generate the following four types of inappropriate MCSs: duplicate MCSs, MCSs subsumed by other MCSs, nonsense MCSs, and MCSs with over-counted fire frequencies. Among the inappropriate MCSs, the nonsense MCSs should be addressed first because they can interfere with the right interpretation of the other MCSs and prevent the resolution of the issues related to the other inappropriate MCSs. In addition, we propose a resolution process for each of the issues caused by these inappropriate MCSs and suggest an overall procedure for resolving them. The results of this study will contribute to the understanding and resolution of the inappropriate MCSs that may appear in the quantification of fire events PSA models.

A DEVELOPMENT OF MODEL FOR FIRE HAZARD ASSESSMENTS H THE BUILDINGS

  • Lee, Su-Kyung;Kim, Su-Tae;Ha, Dong-Myung
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.384-391
    • /
    • 1997
  • The hazard assessment in which the potential hazard factors In the buildings are investigated and the scale of the hazard is analyzed should be performed first in order to prevent personal and material damages due to building fire. In this study, the building fire hazard are assessed using 822-item checklist, for the qualitative evaluation of which the main factors are classified into 10 items, yielding 100 scale points with some weighting. It is shown that present model is applicable for the assessment of all general buildings through the examination of the suitability of assessment model by actual assessment of existing building. Also, the checklist is prepared in itemized questionnaire form for easy assessment of building fire hazard. Therefore, the present model will be helpful for those working in fire prevention, who are suffering from the lack of manifest evaluation model for the fire prevention assessment so far in Korea.

  • PDF

Development of User-centered Fire Safety Evaluation Model for School Buildings (교육시설의 사용자 중심 화재안전수준 평가모형 개발)

  • Park, Sung-Chul;Kim, Jin-Wook
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.238-239
    • /
    • 2021
  • This study presented the development of a user centered school facility fire safety evaluation model that would support fire safety evaluation, which is globally recognized as being important in terms of school safety, to be more efficiently implemented in the school field mainly by students. The study consisted of five steps. First, actual condition survey tools were developed based on the major fire safety evaluation items derived through literature review. Second, the characteristics of domestic school facilities in terms of fire safety were developed using the survey tools. Third, an evaluation model at a level utilizable by students was developed based on the foregoing characteristics. Fourth, the applicability of the model was verified through a trial application of the model to elementary school students. Finally, legal and institutional improvement plans and fire safety education materials were presented through a policy proposal.

  • PDF

A Numerical Study of Smoke Movement In Atrium Space (아트리움 공간에 있어서 연기 유동에 관한 수치해석적 연구)

  • 노재성;유홍선;정연태;김충익;윤명오
    • Fire Science and Engineering
    • /
    • v.11 no.4
    • /
    • pp.3-14
    • /
    • 1997
  • The smoke filling process for the atrium space containing a fire source is simulated using two types of deterministic fire model : Zone model and Field model. The zone model used is the CFAST(version 1.6) model developed at the Building and Fire Research Laboratories, NIST in the USA. The field model is a self-developed frie field model based on Computational Fluid Dynamic (CFD) theories. This article is focused on finding out the smoke movement and temperature distribution in atrium space which is cubic in shape. For solving the liked set of velocity and pressure equation, the PISO algorithm, which strengthened the velocity-pressure coupling, was used. Since PISO algorithm is a time-marching procedure, computing time si very fast. A computational procedure for predicting velocity and temperature distribution in fire-induced flow is based on the solution, in finite volume method and non-staggered grid system, of 3-dimensional equations for the conservation of mass, momentum, energy, species and so forth. The fire model i.e Zone model and Field model predicted similar results for clear heights and the smoke layer temperature.

  • PDF

A Study on Evacuee′s Risk Assessment under Ship′s Fire (선박화재의 인명안전평가 해석)

  • 양영순;정정호;이재옥;공수철;여인철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.241-247
    • /
    • 2001
  • A Fire Safety Evaluation Module(FSEM), which quantitatively evaluates the risk of evacuees when fire occurs in buildings or ships, is presented in this paper. The developed FSEM can be applied to multi-room structure. Basic input data for the FSEM are prepared by fire model and evacuation model. CFAST which is one of the existing fire models is used as fire model and MonteDEM evacuation model was developed for evacuation model, respectively. MonteDEM evacuation model makes use of distinct element method and Monte-Carlo simulation, and it can also take into consideration ground inclination by ship motions in order to simulate the real situation of evacuation. Some typical situations are modelled for illustrative examples and quantitative assessment of evacuee's risk under fire accident is carried out.

  • PDF

A Study on the Heat and Gas Flow for Fire Simulation in a Tunnel (화재시 터널내 열유동 시뮬레이션 모델 연구)

  • 우경범;김원갑;한화택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.584-591
    • /
    • 2002
  • The objective of the present study is to develop a model to predict heat and gas flow movement by fire in a tunnel. The model includes component models such as turbulence model, combustion model, fire model, jet fan model, etc. It has been validated using the data from Memorial Tunnel Fire Ventilation Test Program. The predictions are in good quantitative agreement with the experimental data in the far-field region of the tunnel. It should be further investigated to develop models for radiation between surfaces, for composite boundary conditions for conduction and convection, and for vigorous turbulent mixing in a tunnel especially for a large size of fire.