• Title/Summary/Keyword: Finte element analysis

Search Result 15, Processing Time 0.019 seconds

Dynamic Analysis of Elastic Catenary Cable Subjected to Current (조류 하중을 받는 탄성 현수선 케이블의 동적 해석)

  • 백인열;장승필;윤종윤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.95-104
    • /
    • 1998
  • The dynamic behavior of the marine cable is essentially nonlinear and dominated by geometric nonlinearity. Furthermore, fluid drag force makes the problem more complex and difficult. Therefore, it has certain limitations to obtain the dynamic behavior of the marine cable by analytical method. The purpose of this paper is to apply the elastic catenary cable element to the problem of under water cable including the hydrodynamic effects of fluids. The static and dynamic formulations for the three-dimensional elastic catenary coble under water effects are derived and the finite element analysis procedures are presented. In the analysis, the hydrodynamic forces are modeled by modified Morison equation. A comparison of the results obtained using present method with previously published results showed the validity of present method. The dynamic behavior of the marine cable subjected to current is investigated using present method and it can be illustrated that the dynamic behavior of the marine cable subjected to current varies with the incident angle of the current and inclined angle of the cable.

  • PDF

Research on MFL PIG Design for the Inspection of Underground Gas Pipeline (지하매설 가스관의 검사를 위한 누설자속탐상 PIG 설계에 관한 연구)

  • Park, Sang-Ho;Park, Gwan-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.177-186
    • /
    • 2002
  • This paper describes the magnetic flux leakage(MFL) type non-destructive testing(NDT) system to detect the 3D defects in underground gas pipe. Magnetic systems with permanent magnets and yokes are analyzed by 3D non-lineal finite element method(FEM) with optimum design. In case of under-saturation of gas pipe, sensing signals are too weak to detect. In case of over-saturation, the changes of the sensing signals are too low to detect the defects sensitively. So, the operating points of the magnetic system are optimized to increase the changes of the MFL signals. The effects of the depth and size of the defects on the sensing signals are analyzed to define the range and resolution of the MFL sensors. To increase the sensor's sensitivity, the back-yoke sensors are introduced and tested.

Research on MFL PIG Design for caustic and defect the Inspection of Underground Gas Pipeline (지하매설 가스관의 부식 및 결함 탐지를 위한 비파괴 누설 탐상시스템 개발에 관한 연구)

  • Park, Sang-Ho;Park, Gwan-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.11-20
    • /
    • 2002
  • This paper describes the magnetic flux leakage(MFL) type non-destructive testing(NDT) system to detect the 3D defects on underground gas pipe. Magnetic systems with permanent magnets and yokes are analyzed by 3D non-lineal finite element method(FEM) with optimum design. In case of under-saturation of gas pipe, sensing signals are too weak to detect. In case of over-saturation, the changes of the sensing signals are too low to detect the defects sensitively. So, the operating points of the magnetic system are optimized to increase the changes of the MFL signals. The effects of the depth and size of the defects on the sensing signals are analyzed to define the range and resolution of the MFL sensors. To increase the sensor's sensitivity, the back-yoke sensors are introduced and tested.

  • PDF

EFFECT OF RESTORATION TYPE ON THE STRESS DISTRIBUTION OF ENDODONTICALLY TREATED MAXILLARY PREMOLARS; THREE-DIMENSIONAL FINITE ELEMENT STUDY (수복물의 종류가 근관치료된 상악 제2소구치의 응력분포에 미치는 영향: 3차원 유한요소법적 연구)

  • Jung, Heun-Sook;Kim, Hyeon-Cheol;Hur, Bock;Kim, Kwang-Hoon;Son, Kwon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.1
    • /
    • pp.8-19
    • /
    • 2009
  • The purpose of this study was to investigate the effects of four restorative materials under various occlusal loading conditions on the stress distribution at the CEJ of buccal. palatal surface and central groove of occlusal surface of endodontically treated maxillary second premolar, using a 3D finte element analysis. A 3D finite element model of human maxillary second premolar was endodontically treated. After endodontic treatment, access cavity was filled with Amalgam, resin, ceramic or gold of different mechanical properties. A static 500N forces were applied at the buccal (Load-1) and palatal cusp (Load-2) and a static 170N forces were applied at the mesial marginal ridge and palatal cusp simultaneously as centric occlusion (Load-3). Under 3-type Loading condition, the value of tensile stress was analyzed after 4-type restoration at the CEJ of buccal and palatal surface and central groove of occlusal surface Excessive high tensile stresses were observed along the palatal CEJ in Load-1 case and buccal CEJ in Load-2 in all of the restorations. There was no difference in magnitude of stress in relation to the type of restorations. Heavy tensile stress concentrations were observed around the loading point and along the central groove of occlusal surface in all of the restorations. There was slight difference in magnitude of stress between different types of restorations. High tensile stress concentrations around the loading points were observed and there was no difference in magnitude of stress between different types of restorations in Load-3.

Limit Loads for Circular Wall-Thinned Feeder Pipes Subjected to Bending and Internal Pressure. (원형 감육이 발생한 중수로 피더관의 한계하중 평가)

  • Je, Jin-Ho;Lee, Kuk-Hee;Chung, Ha-Joo;Kim, Jong-Sung;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1675-1680
    • /
    • 2010
  • Flow Accelerated Corrosion (FAC) occurring during in-service conditions results in localized wall-thinning in the feeder pipes of CANDU. The wall-thinning of the feeder pipes is the main degradation mechanisms affecting the integrity of piping systems. In this paper, we assess the integrity of wall-thinned feeder pipes by limit load analysis. The limit loads for wall-thinning feeder pipes subjected to in-plane bending and internal pressure were determined on the basis of finte element limit analyses. The limit loads are determined from the results of limit analyses of elasticperfectly-plastic materials using the large geometry change. Closed-form approximations of limit load solutions for wall-thinning feeder pipes subjected to in-plane bending and pressure are proposed.