• Title/Summary/Keyword: Finite volumes method

Search Result 28, Processing Time 0.027 seconds

Region Segmentation and Volumetry of Brain MR Image represented as Blurred Gray Value by the Partial Volume Artifact (부분체적에 의해 번진 명암 값으로 표현된 뇌의 자기공명영상에 대한 영역분할 및 체적계산)

  • 성윤창;송창준;노승무;박종원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7A
    • /
    • pp.1006-1016
    • /
    • 2000
  • This study is to segment white matter, gray matter, and cerebrospinal fluid(CSF) on a brain MR image and to calculate the volume of each. First, after removing the background on a brain MR image, we segmented the whole region of a brain from a skull and a fat layer. Then, we calculated the partial volume of each component, which was present in scanning finite thickness, with the arithmetical analysis of gray value from the internal region of a brain showing the blurring effects on the basis of the MR image forming principle. Calculated partial volumes of white matter, gray matter and CSF were used to determine the threshold for the segmentation of each component on a brain MR image showing the blurring effects. Finally, the volumes of segmented white matter, gray matter, and CSF were calculated. The result of this study can be used as the objective diagnostic method to determine the degree of brain atrophy of patients who have neurodegenerative diseases such as Alzheimer's disease and cerebral palsy.

  • PDF

Recognizing the Direction of Action using Generalized 4D Features (일반화된 4차원 특징을 이용한 행동 방향 인식)

  • Kim, Sun-Jung;Kim, Soo-Wan;Choi, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.518-528
    • /
    • 2014
  • In this paper, we propose a method to recognize the action direction of human by developing 4D space-time (4D-ST, [x,y,z,t]) features. For this, we propose 4D space-time interest points (4D-STIPs, [x,y,z,t]) which are extracted using 3D space (3D-S, [x,y,z]) volumes reconstructed from images of a finite number of different views. Since the proposed features are constructed using volumetric information, the features for arbitrary 2D space (2D-S, [x,y]) viewpoint can be generated by projecting the 3D-S volumes and 4D-STIPs on corresponding image planes in training step. We can recognize the directions of actors in the test video since our training sets, which are projections of 3D-S volumes and 4D-STIPs to various image planes, contain the direction information. The process for recognizing action direction is divided into two steps, firstly we recognize the class of actions and then recognize the action direction using direction information. For the action and direction of action recognition, with the projected 3D-S volumes and 4D-STIPs we construct motion history images (MHIs) and non-motion history images (NMHIs) which encode the moving and non-moving parts of an action respectively. For the action recognition, features are trained by support vector data description (SVDD) according to the action class and recognized by support vector domain density description (SVDDD). For the action direction recognition after recognizing actions, each actions are trained using SVDD according to the direction class and then recognized by SVDDD. In experiments, we train the models using 3D-S volumes from INRIA Xmas Motion Acquisition Sequences (IXMAS) dataset and recognize action direction by constructing a new SNU dataset made for evaluating the action direction recognition.

A Numerical Study on R410A Charge Amount in an Air Cooled Mini-Channel Condenser (공랭식 미소유로 응축기의 R410A 충전량 예측에 관한 수치적 연구)

  • Park, Chang-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.710-718
    • /
    • 2010
  • A numerical study was performed to predict refrigerant charge amount in a mini-channel condenser for a R410A residential air-conditioning system. Multi-channel flat tubes with 12 mini-channels of 1.17 mm average hydraulic diameter for each tube were applied to the condenser. The condenser consisted of 3 passes, and the first, second, and third pass had 44, 19, and 11 tubes, respectively. Each pass was connected by a vertical header. In this study, the condenser was divided into 410 finite volumes, and analyzed by an $\varepsilon$-NTU method. With thermophysical properties and void fraction models for each volume element, the R410A amount distribution and a total charge amount in the condenser were calculated. The predicted total charge amount was compared with the experimentally measured charge amount under a standard ARI A condition. The developed model could predict the charge amount in the mini-channel condenser within prediction errors from -23.9% to -3.0%. Air velocity distribution at the condenser face was considered as non-uniform and uniform by the simulation model, and its results showed that the air velocity distribution could significantly influence the charge amount and vapor phase distribution in the condenser.

Wake Region Estimation of Artificial Reefs using Wake Volume Diagrams (후류체적선도를 이용한 인공어초 후류역 평가)

  • KIM, Dongha;JUNG, Somi;NA, Won-Bae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.4
    • /
    • pp.1042-1056
    • /
    • 2016
  • To evaluate the wake regions of six artificial reefs (ARs) frequently used in the marine forest creation project in Korea, we consider the effect of water flow directions on the wake regions and accordingly propose a wake region diagram, which is characterized by parameters such as wake volume fluctuations, averaged wake volume, fundamental symmetric angle, secure angle, and principal direction. To demonstrate the parameters, seven water flow directions (0 to $90^{\circ}$) were considered and consequently the variations in wake volumes were investigated by using the concept of wake volume, adopting element-based finite volume method, and utilizing numerical flow domain and boundary conditions. From the analysis results, it was shown that the wake region diagrams have a period of either 45 or $90^{\circ}$ according to the geometrical symmetry of each artificial reef. Also, it was found that the secure angle ranges fluctuate depending on the shapes and sizes of the artificial reefs considered. Thus, it is demanded to consider those parameters during installation of artificial reefs for establishing a larger wake region and accordingly attracting more marine fauna and flora in the region.

An Approximation Method for the Estimation of Exposed dose due to Gamma - rays from Radioactive Materials dispersed to the Atmoshere (대기로 확산된 방사성물질로부터 방출되는 감마선에 의한 피폭선량을 계산하기 위한 근사화 방법)

  • Kim, T.W.;Park, C.M.;Ro, S.G.
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.51-56
    • /
    • 1990
  • The dispersing model of radioactive plume in the atmosphere was assumed to form finite ellipseshaped volumes rather than a single plume and gamma absorbed doses from the plume were computed using the proposed model. The results obtained were compared with those computed by the Gaussian plume and the circular approximation models. The results computed by the proposed ellipse-shaped approximation model were close to those by the Gaussian plume model. and more accurate than those by the circular approximation model. The computing time for the proposed approximation model was one fortieth of that for the Gaussian plume model.

  • PDF

Computer Simulation of an Automotive Engine Cooling System (자동차 엔진 냉각시스템의 컴퓨터 시뮬레이션)

  • 원성필;윤종갑
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.58-67
    • /
    • 2003
  • An automotive engine cooling system is closely related with overall engine performances, such as reduction of fuel consumption, decrease of air pollution, and increase of engine life. Because of complex reaction between each component, the direct experiment, using a vehicle, takes high cost, long time, and slow response to the system change. Therefore, a computer simulation would provide the designer with an inexpensive and effective tool for design, development, and optimization of the engine cooling system over a wide range of operating conditions. In this work, it has been predicted the thermal performance of the engine cooling system in cases of stationary mode, constant speed mode, and city-drive mode by mathematical modelling of each component and numerical analysis. The components are engine, radiator, heater, thermostat, water pump, and cooling fans. Since the engine model is the most important, that is divided into eight sub-sections. The volume mean temperature of eight sub-sections are simultaneously calculated at a time. For detail calculation, the radiator and heater are also divided into many sub-sections like control volumes in finite difference method. Each sub-section is assumed to consist of three parts, coolant, tube with fin, and air. Hence it has been developed the simulation program that can be used in case of design and system configuration changes. The overall performance results obtained by the program were desirable and the time-traced tendencies of the results agreed fairly well with those of actual situations.

Comparative study of constitutive relations implemented in RELAP5 and TRACE - Part II: Wall boiling heat transfer

  • Shin, Sung Gil;Lee, Jeong Ik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1860-1873
    • /
    • 2022
  • Nuclear thermal-hydraulic system analysis codes have been developed to comprehensively model nuclear reactor systems to evaluate the safety of a nuclear reactor system. For analyzing complex systems with finite computational resources, system codes usually solve simplified fluid equations for coarsely discretized control volumes with one-dimensional assumptions and replace source terms in the governing equations with constitutive relations. Wall boiling heat transfer models are regarded as essential models in nuclear safety evaluation among many constitutive relations. The wall boiling heat transfer models of two widely used nuclear system codes, RELAP5 and TRACE, are analyzed in this study. It is first described how wall heat transfer models are composed in the two codes. By utilizing the same method described in Part 1 paper, heat fluxes from the two codes are compared under the same thermal-hydraulic conditions. The significant factors for the differences are identified as well as at which conditions the non-negligible difference occurs. Steady-state simulations with both codes are also conducted to confirm how the difference in wall heat transfer models impacts the simulation results.

Study of $\textrm{IMFAST}^{TM}$ Segmentation Algorithm with CORVUS TPS for Intensity Modulated Radiation Therapy (세기조절 방사선 치료에서 CORVUS TPS를 이용한 $\textrm{IMFAST}^{TM}$ Segmentation Algorithm의 연구)

  • Lee, Se-Byeong;Jino Bak;Cho, Kwang-Hwan;Chu, Sung-Sil;Lee, Chang-Geol;Lee, Suk;Hongryll Pyo;Suh, Chang-Ok
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.181-186
    • /
    • 2002
  • The IMRT planning depends on the algorithm of each planning system and MLC performance of each Linac system. Yonsei Cancer Center introduced an IMRT System at the beginning of February, 2002. The system consists of CORVUS (Nomos, U.S.A.) treatment planning system, LANTIS, PRIMEVIEW and PRIMART (Siemens, U.S.A) linac system. The optimization of CORVUS planning system with PRIMART is an important task to make a desirable quality treatment plan. Our Step & Shoot IMRT system uses Finite Size Pencil Beams (FSPB) dose model, simulated annealing optimization algorithm and IMFAST segmentation algorithm. We constructed treatment plans for four different patient cases with two basic beamlet sizes, 1.0$\times$1.0 $\textrm{cm}^2$ and 0.5$\times$1.0 $\textrm{cm}^2$, and four intensity steps, 5%, 10%, 20%, 33%. Each case's plan was evaluated with the dose volume histograms of target volumes and delivery efficiencies. The patient case of small target volume is sensitive at the change of intensity map's segmentation and it highlighted an effective treatment plan at marrow intensity step and small basic projection beamlet.

  • PDF