• 제목/요약/키워드: Finite metal

검색결과 1,312건 처리시간 0.025초

이종재료 금속조인트의 굽힘에 의한 잔류응력 해석 (Residual Stress Analysis in Bi-material Metal Joint under Bending Moment by Finite Element Method)

  • 백태현;정걸;박태근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.448-451
    • /
    • 2005
  • It was observed that after unloading or removal of the load from the specimen subjected to bending stress, partial or full elastic spring back occurred and considerable stresses have resulted while plastic deformation was considered. ABAQUS is a suite of powerful engineering simulation programs, based on the finite element method. In this paper, it was used as the main tool to analyze elastic and plastic deformations of hi-material metal joint. In the case of elastic deformations, the results were comparable to the theoretical data. Plastic deformations and residual stresses of hi-material metal joint under bending moment were obtained by ABAQUS; where the theory needs to be studied and improved further to verify the results.

  • PDF

강-소성 유한요소법의 3차원 역추적 기법을 적용한 코이닝 공정설계 (Process Design in Coining by Three-Dimensional Backward Tracing Scheme of Rigid-Plastic Finite Element Method)

  • 최한호;변상규;강범수
    • 소성∙가공
    • /
    • 제6권5호
    • /
    • pp.408-415
    • /
    • 1997
  • The backward tracing scheme of the finite element analysis, which is counted to be unique and useful for process design in metal forming, has been developed and applied successfully in industry to several metal forming processes. Here the backward tracing scheme is implemented for process design of three-dimensional plastic deformation in metal forming, and it is applied to a precision coining process. The contact problem between the die and workpiece has been treated carefully during backward tracing simulation in three-dimensional deformation. The results confirm that the application of the developed program implemented with backward tracing scheme of the rigid plastic finite element leads to a reasonable initial piercing hole configuration. It is concluded that three-dimensional extension of the scheme appears to be successful for industrial applications.

  • PDF

분기좌굴이론을 이용한 박판성형공정에서의 주름발생해석 (An analysis of the wrinkling initiation in sheet metal forming using bifurcation theory)

  • 김종봉;양동렬;윤정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.28-31
    • /
    • 1998
  • Wrinkling is one of the major defects in sheet metal products and may be also attributable to the wear of the tool. The initiation and growth of the wrinkles are influenced by many factors such as stress state, mechanical properites of the sheet material, geometry of the body, and contact condition. It is difficult to analyze the wrinkling initiation and growth considering the factors because the effects of the factors are very complex and the wrinkling behavior may show wide variation for small deviation of the factors. In this study, the bifurcation theory is introduced for the finite element analysis of wrinkling initiation and growth, All the above mentioned factors are conveniently considered by finite element method. The finite element formulation is based on the incremental deformation theory and elastic-plastic material modeling. The finite element analysis is carried out using the continuum-based resultant shell elements considering the planar anisotropy of the sheet metal. The proposed method is verified by employing to column buckling problem. And then, the initiation and growth of wrinkling in deep drawing of cylindrical cup are analyzed.

  • PDF

소성가공 공정설계용 3차원 유한요소 프로그램의 개발 및 정밀코이닝 공정설계 (Development of a Three-Dimensional Finite Element Program for Metal Forming and its Application to Precision Coining)

  • 최한호;이진희;강범수
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1642-1650
    • /
    • 1995
  • Process design is one of the most important fields in metal forming, where the finite element method has appeared a useful method for industrial applications. In this study, a program using the rigid plastic finite element has been developed for process design in three-dimensional plastic deformation. The surface integration for calculation of the friction between die and workpiece has been implemented with care in numerical treatment. The developed program is applied to a precision coining process of electronic components. It is confirmed that the program developed here is suitable for process design in metal forming with three-dimensional plastic deformation.

수치해석방법을 이용한 이종금속용접부에서의 균열성장해석 (Crack Growth Analysis of Dissimilar Metal Weld using a Numerical Method)

  • 김상철;김만원
    • Journal of Welding and Joining
    • /
    • 제28권1호
    • /
    • pp.100-106
    • /
    • 2010
  • In this paper crack propagation analyses in the dissimilar metal weldment of a nozzle were performed using a finite element alternating method (FEAM). A two-dimensional axisymmetric finite element nozzle model was prepared and welding simulation including the thermal heat transfer analysis and the thermal stress analysis was performed. Initial cracks were inserted at weld and heat affected zone in the finite element model which has welding residual stress distribution obtained from the welding simulation. To calculate crack propagation trajectories of these cracks, a new fatigue crack evaluation module was developed in addition to the previous FEAM program. With the new FEAM fatigue crack evaluation module, crack propagation trajectory and crack growth time were calculated automatically and effectively.

박판성형해석을 위한 자동 프리에지 제거에 관한 연구 (A Study on the Automatic Elimination of Free Edge for Sheet Metal Forming Analysis)

  • 유동진
    • 소성∙가공
    • /
    • 제13권7호
    • /
    • pp.614-622
    • /
    • 2004
  • A new approach for the automatic elimination of free edges in the finite element model for the analysis of sheet metal forming processes is presented. In general, the raw finite element model constructed from an automatic mesh generator is not well suited for the direct use in the downstream forming analysis due to the many free edges which requires tedious time consuming interactive graphic operations of the users. In the present study, a general method for the automatic elimination of free edges is proposed by introducing a CAD/CAE hybrid method. In the method a trimmed parametric surface is generated to fill the holes which are orginated from the free edges by using the one step elastic finite element analysis. In addition, mesh generation algorithm is suggested which can be used in the general trimmed surface. In order to verify the validity of the proposed method, various examples including actual automobile sheet metal parts are given and discussed.

유한요소법을 이용한 정상상태의 소성가공 공정의 최적설계-I - 이론적 고찰 (Process Optimal Design in Steady-State Metal Forming by Finite Finite Element Method-I Theoretical Considerations)

  • 전만수;황상무
    • 대한기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.443-452
    • /
    • 1992
  • 본 연구에서는 소성가공 공정의 최적설계를 위한 새로운 접근 방법이 소개 된다.이방법은 소성가공 공정의 유한요소해석 기술과 기계시스템의 최적설계 기술 에 바탕을 두고 있다. 벌칙 강소성유한요소법, 정상 상태의 소성가공 공정(steady -state metal forming process)을 위한 최적설계 문제의 수식화, 설계민감도의 해석 방법, 설계민감도의 정확성에 관한 고찰, 구배투영법(gradient projection emthod)등 이 본 논문에서 상세하게 소개된다.

유한요소해석 기반 원전 기계구조물 충격-질량지표 개발 (Development of FEA-based Metal Sphere Signal Map for Nuclear Power Plant Structure)

  • 문성인;강토;한순우
    • 한국압력기기공학회 논문집
    • /
    • 제14권1호
    • /
    • pp.38-47
    • /
    • 2018
  • For safe operation of nuclear power plants, a loose-part monitoring system (LPMS) is used to detect and locate loose-parts within the reactor coolant system, and to estimate their mass and damage potential. There are several methods to estimate mass, such as the center frequency method based on the Hertz's impact theory, a frequency ratio method and so on, but it is known that these methods cannot provide accurate information on impact response for identifying the impact source. Thanks to increasing computing power, finite element analysis (FEA) method recently become an available option to calculate reliably impact response behavior. In this paper, a finite element analysis model to simulate the propagation behavior of the bending wave, generated by a metal ball impact, is validated by performing a series of impact tests and the corresponding finite element analyses for flat plate and shell structures. Also, a FEA-based metal sphere signal map is developed, and then blind tests are performed to verify the map. This study provides an accurate simulation method for predicting the metal impact behavior and for building a metal sphere signal map, which can be used to estimate the mass of loose-parts on site in nuclear power plants.

유한요소해석을 이용한 노즐 이종금속용접부의 용접잔류응력 예측 (Prediction of Welding Residual Stress of Dissimilar Metal Weld of Nozzle using Finite Element Analyses)

  • 허남수;김종욱;최순;김태완
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.83-84
    • /
    • 2008
  • The primary water stress corrosion cracking (PWSCC) of dissimilar metal weld based on Alloy 82/182 is one of major issues in material degradation of nuclear components. It is well known that the crack initiation and growth due to PWSCC is influenced by material's susceptibility to PWSCC and distribution of welding residual stress. Therefore, modeling the welding residual stress is of interest in understanding crack formation and growth in dissimilar metal weld. Currently in Korea, a numerical round robin study is undertaken to provide guidance on the welding residual stress analysis of dissimilar metal weld. As a part of this effort, the present paper investigates distribution of welding resisual stress of a ferritic low alloy steel nozzle with dissimilar metal weld using Alloy 82/182. Two-dimensional thermo-mechanical finite element analyses are carried out to simulate multi-pass welding process on the basis of the detailed design and fabrication data. The present results are compared with those from other participants, and more works incorporating physical measurements are going to be performed to quantify the uncertainties relating to modelling assumptions.

  • PDF

Analysis of Drawbead Process by Static-Explicit Finite Element Method

  • Jung, Dong-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1687-1692
    • /
    • 2002
  • The problem analyzed here is a sheet metal forming process which requires a drawbead. The drawbead provides the sheet metal enough tension to be deformed plastically along the punch face and consequently, ensures a proper shape of final products by fixing the sheet to the die. Therefore, the optimum design of drawbead is indispensable in obtaining the desired formability. A static-explicit finite element analysis is carried out to provide a perspective tool for designing the drawbead. The finite element formulation is constructed from static equilibrium equation and takes into account the boundary condition that involves a proper contact condition. The deformation behavior of sheet material is formulated by the elastic-plastic constitutive equation. The finite element formulation has been solved based on an existing method that is called the static-explicit method. The main features of the static-explicit method are first that there is no convergence problem. Second, the problem of contact and friction is easily solved by application of very small time interval. During the analysis of drawbead processes, the strain distribution and the drawing force on drawbead can be analyzed. And the effects of bead shape and number of beads on sheet forming processes were investigated. The results of the static explicit analysis of drawbead processes show no convergence problem and comparatively accurate results even though severe high geometric and contact-friction nonlinearity. Moreover, the computational results of a static-explicit finite element analysis can supply very valuable information for designing the drawbead process in which the defects of final sheet product can be removed.