• 제목/요약/키워드: Finite generation

검색결과 817건 처리시간 0.022초

영역분할법에 기반을 둔 병렬 유한요소해석 시스템 (Parallel Finite Element Analysis System Based on Domain Decomposition Method Bridges)

  • 이준성;염곡 강이;이은철;이양창
    • 한국전산구조공학회논문집
    • /
    • 제22권1호
    • /
    • pp.35-44
    • /
    • 2009
  • 본 논문에서는 대규모 3차원 구조해석에 필요한 병렬 유한요소해석을 위한 영역분할법의 적용에 대해 묘사하였다. 영역분할법을 사용한 병렬 유한요소법 시스템을 개발하였다. 절점 생성시, 절점들간의 거리가 특정절점에서의 공간함수와 같아지면 절점이 생성되어 진다. 이 절점공간함수는 퍼지지식처리에 의해 조절되어 진다. 기본적인 요소생성은 데로우니 삼각화 기법을 적용하였다. 자동요소생성 시스템을 이용한 영역분할법은 3차원 해석에 큰 도움이 된다. 공간함수와 유사하게 절점들간의 유한요소해석을 위한 병렬 수치 알고리즘으로서 영역분할법을 전체의 해석영역을 완전히 여러 개의 작은 영역으로 겹치지 않게 나누는 공역구배인 반복적 솔버와 결합시켰다. 개발된 시스템의 효용성에 대한 성능을 몇 가지 예를 통해 제시하였다.

점진 전개기법 및 유한요소 역해석법을 이용한 자동차 패널 트리밍 라인 설계 (Trimming Line Design using Incremental Development Method and Finite Element Inverse Method)

  • 정완진;박춘달;송윤준;오세욱
    • 소성∙가공
    • /
    • 제15권6호
    • /
    • pp.445-452
    • /
    • 2006
  • In most of automobile body panel manufacturing, trimming process is generally performed before flanging. To find feasible trimming line is crucial in obtaining accurate edge profile after flanging. Section-based method develops blank along manually chosen section planes and find trimming line by generating loop of end points. This method suffers from inaccurate results of edge profile. On the other hand, simulation-based method can produce more accurate trimming line by iterative strategy. In this study, new fast simulation-based method to find feasible trimming line is proposed. Finite element inverse method is used to analyze the flanging process because final shape after flanging can be explicitly defined and most of strain paths are simple in flanging. In utilizing finite element inverse method, the main obstacle is the initial guess generation for general mesh. Robust initial guess generation method is developed to handle genera] mesh with very different size and undercut. The new method develops final triangular mesh incrementally onto the drawing tool surface. Also in order to remedy mesh distortion during development, energy minimization technique is utilized. Trimming line is extracted from the outer boundary after finite element inverse method simulation. This method has many advantages since trimming line can be obtained in the early design stage. The developed method is verified by shrink/stretch flange forming and successfully applied to the complex industrial applications such as door outer flanging process.

Adaptive Finite Element Mesh Generation Schemes for Dynamic Structural Analyses

  • Yoon, Chong-Yul
    • 한국방재학회 논문집
    • /
    • 제10권1호
    • /
    • pp.23-28
    • /
    • 2010
  • 구조물의 방재를 위해서 구조물의 효율적인 유지관리는 필수적이며, 여기서 신뢰 있는 구조물의 동적해석은 중요한 역할을 한다. 유한요소법은 구조해석법으로 가장 많이 사용되는 방법으로 자리 잡고 있으며, 요소와 요소망이 제대로 선택되면 신뢰 있는 해석 결과를 출력한다. 시간 영역 동적해석에 유한요소법을 사용하려면 각 시간 단계에서 요소망을 재형성할 필요가 생길 수 있는데, 여기에 연산 시간 측면에서 효율적인 적응적 요소망 전략을 사용하면 편리하다. 본 연구는 시간영역 동적해석에서 전단계 해석 결과를 사용하여 계산된 대표 변형률 값을 오차 평가하는데 사용하고, 요소 세분화는 절점 이동인 r-법과 요소 분할인 h-법의 조합으로 효율적으로 계산하는 적응적 요소망 형성 전략을 제시한다. 적용한 캔틸레버보의 예제를 통하여 정확성과 연산 효율성을 검증하였고 나아가 방법의 간단함이 지진 하중, 풍하중 등에 의한 복잡한 구조 동적 해석에도 효율적으로 사용될 수 있는 것을 보여 준다.

Numerical Analysis of the Wavelength Dependence in Low Level Laser Therapy (LLLT) Using a Finite Element Method

  • Yoon, Jin-Hee;Park, Ji-Won;Youn, Jong-In
    • The Journal of Korean Physical Therapy
    • /
    • 제22권6호
    • /
    • pp.77-83
    • /
    • 2010
  • Purpose: The aim of this study was to do numerical analysis of the wavelength dependence in low level laser therapy (LLLT) using a finite element method (FEM). Methods: Numerical analysis of heat transfer based on a Pennes' bioheat equation was performed to assess the wavelength dependence of effects of LLLT in a single layer and in multilayered tissue that consists of skin, fat and muscle. The three different wavelengths selected, 660 nm, 830 nm and 980 nm, were ones that are frequently used in clinic settings for the therapy of musculoskeletal disorders. Laser parameters were set to the power density of 35.7 W/$cm^2$, a spot diameter of 0.06 cm, and a laser exposure time of 50 seconds for all wavelengths. Results: Temperature changes in tissue based on a heat transfer equation using a finite element method were simulated and were dominantly dependent upon the absorption coefficient of each tissue layer. In the analysis of a single tissue layer, heat generation by fixed laser exposure at each wavelength had a similar pattern for increasing temperature in both skin and fat (980 nm > 660 nm > 830 nm), but in the muscle layer 660nm generated the most heat (660 nm ${\gg}$ 980 nm > 830 nm). The heat generation in multilayered tissue versus penetration depth was shown that the temperature of 660 nm wavelength was higher than those of 830 nm and 980 nm Conclusion: Numerical analysis of heat transfer versus penetration depth using a finite element method showed that the greatest amount of heat generation is seen in multilayered tissue at = 660 nm. Numerical analysis of heat transfer may help lend insight into thermal events occurring inside tissue layers during low level laser therapy.

유한요소해석을 이용한 공형 압연에서의 표면흠 발생 연구 (A Study of Surface Defect Initiation in Groove Rolling Using Finite Element Analysis)

  • 나두현;허종욱;이영석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.333-336
    • /
    • 2008
  • The groove rolling is a process that transforms the bloom or billet into a shape with circular section through a series of rolling. Inhibition of surface defect generation in groove rolling is a matter of great importance and therefore many research groups proposed a lot of models to find the location of surface defect initiation. In this study, we propose a model for maximum shear stress ratio over equivalent strain to catch the location of surface defect onset. This model is coupled with element removing method and applied to box groove rolling of POSCO No. 3 Rod Mill. Results show that proposed model in this study can find the location of surface defect initiation during groove rolling when finite element analysis results is compared with experiments. The proposed criterion has been applied successfully to design roll grooves which inhibits the generation of surface defect.

  • PDF

셀 구조물에서 중립면에 대한 유한요소망의 자동생성 (Automatic Generation of Finite Element Meshes on Midsurfaces in Shell Structures)

  • 손준희;채수원
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1517-1525
    • /
    • 2004
  • Shell finite elements are widely used for the analysis of thin section objects such as sheet metal parts, automobile bodies and et al. due to their computational efficiency. Since many of input data for finite element analysis are given as solid models or triangulated surface models, one should extract midsurface information from these input data initially and then construct shell meshes on the extracted midsurfaces. In this paper, a method of generating shell elements on midsurfaces directly from input models has been proposed, in which midsurface generating process can be omitted. In order to construct shell meshes, the input models should be triangulated on surfaces first, and then tetrahedral elements are generated by using an advancing front method, and finally mid shell surfaces are obtained from tetrahedral meshes. Some examples are given to demonstrate the efficiency of the proposed method.

오차 예측과 격자밀도 지도를 이용한 적응 Delaunay 격자생성방법 (Adaptive Delaunay Mesh Generation Technique Based on a Posteriori Error Estimation and a Node Density Map)

  • 홍진태;이석렬;박철현;양동열
    • 소성∙가공
    • /
    • 제13권4호
    • /
    • pp.334-341
    • /
    • 2004
  • In this study, a remeshing algorithm adapted to the mesh density map using the Delaunay mesh generation method is developed. In the finite element simulation of forging process, the numerical error increases as the process goes on because of discrete property of the finite elements and distortion of elements. Especially, in the region where stresses and strains are concentrated, the numerical error will be highly increased. However, it is not desirable to use a uniformly fine mesh in the whole domain. Therefore, it is necessary to reduce the analysis error by constructing locally refined mesh at the region where the error is concentrated such as at the die corner. In this paper, the point insertion algorithm is used and the mesh size is controlled by using a mesh density map constructed with a posteriori error estimation. An optimized smoothing technique is adopted to have smooth distribution of the mesh and improve the mesh element quality.

Finite Element Modeling of Wall Thinning Defects: Applications to Lamb Wave Generation and Interaction

  • Jeong, Hyun-Jo;Kim, Tae-Ho;Lee, Seung-Seok;Kim, Young-Gil
    • 비파괴검사학회지
    • /
    • 제28권2호
    • /
    • pp.199-204
    • /
    • 2008
  • The generation of axisymmetric Lamb waves and interaction with wall thinning (corrosion) defects in hollow cylinders are simulated using the finite element method. Guided wave interaction with defects in cylinders is challenged by the multi-mode dispersion and the mode conversion. In this paper, two longitudinal, axisymmetric modes are generated using the concept of a time-delay periodic ring arrays (TDPRA), which makes use of the constructive/destructive interference concept to achieve the unidirectional emission and reception of guided waves. The axisymmetric scattering by the wall thinning extending in full circumference of a cylinder is studied with a two-dimensional FE simulation. The effect of wall thinning depth, axial extension, and the edge shape on the reflections of guided waves is discussed.

베벨기어 폐쇄냉간단조 공정의 지능형 유한요소해석과 결과의 검증 (Adaptive Finite Element Analysis of an Enclosed Die Forging Process of a Bevel Gear and its Experimental Verification)

  • 이민철;박래훈;전병윤;전만수
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.37-43
    • /
    • 2006
  • In this paper, an approach to adaptive finite element analysis of three-dimensional forging processes is presented with emphasis on remeshing. In the approach, an optimal tetrahedral element generation technique is employed and the mesh density is specified by the combination of the weighted normalized effective strain and the normalized effective strain rate as well as the weighted normalized curvature. The approach is applied to computer simulation of an enclosed die forging process of a bevel gear and its results are compared with its related experiments. It has been shown that the analyzed results are in good agreement with the experimental ones.

베벨기어 폐쇄냉간단조 공정의 지능형 유한요소해석과 결과의 검증 (Adaptive Finite Element Analysis of an Enclosed Die Forging Process of a Bevel Gear and the Experimental Verification)

  • 이민철;박래훈;전병윤;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.99-102
    • /
    • 2005
  • An approach to adaptive finite element analysis of three-dimensional forging processes is presented in this paper. In the approach, an optimal tetrahedral element generation technique is employed and the mesh density is specified by the combination of the normalized effective strain and the normalized effective strain rate. The approach is applied to computer simulation of an enclosed die forging process of a bevel gear and its results are compared with experiments.

  • PDF