• Title/Summary/Keyword: Finite element reliability analysis

Search Result 637, Processing Time 0.024 seconds

Comparison of error estimation methods and adaptivity for plane stress/strain problems

  • Ozakca, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.579-608
    • /
    • 2003
  • This paper deals with adaptive finite element analysis of linearly elastic structures using different error estimators based on flux projection (or best guess stress values) and residual methods. Presentations are given on a typical h-type adaptive analysis, a mesh refinement scheme and the coupling of adaptive finite element analysis with automatic mesh generation. Details about different error estimators are provided and their performance, reliability and convergence are studied using six node quadratic triangular elements. Several examples are presented to demonstrate the reliability of different error estimators.

Reliability analysis of reinforced concrete haunched beams shear capacity based on stochastic nonlinear FE analysis

  • Albegmprli, Hasan M.;Cevik, Abdulkadir;Gulsan, M. Eren;Kurtoglu, Ahmet Emin
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.259-277
    • /
    • 2015
  • The lack of experimental studies on the mechanical behavior of reinforced concrete (RC) haunched beams leads to difficulties in statistical and reliability analyses. This study performs stochastic and reliability analyses of the ultimate shear capacity of RC haunched beams based on nonlinear finite element analysis. The main aim of this study is to investigate the influence of uncertainty in material properties and geometry parameters on the mechanical performance and shear capacity of RC haunched beams. Firstly, 65 experimentally tested RC haunched beams and prismatic beams are analyzed via deterministic nonlinear finite element method by a special program (ATENA) to verify the efficiency of utilized numerical models, the shear capacity and the crack pattern. The accuracy of nonlinear finite element analyses is verified by comparing the results of nonlinear finite element and experiments and both results are found to be in a good agreement. Afterwards, stochastic analyses are performed for each beam where the RC material properties and geometry parameters are assigned to take probabilistic values using an advanced simulating procedure. As a result of stochastic analysis, statistical parameters are determined. The statistical parameters are obtained for resistance bias factor and the coefficient of variation which were found to be equal to 1.053 and 0.137 respectively. Finally, reliability analyses are accomplished using the limit state functions of ACI-318 and ASCE-7 depending on the calculated statistical parameters. The results show that the RC haunched beams have higher sensitivity and riskiness than the RC prismatic beams.

The Stochastic Finite Element Analysis and Reliability Analysis of the Cable Stayed Bridge Considered to Correlation of the Random Variable (확률변수의 상관성을 고려한 사장교의 확률유한요소해석 및 신뢰성해석)

  • Han, Sung Ho;Shin, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.21-33
    • /
    • 2006
  • The reliability analysis can be conducted more effectively by formulating the stochastic finite element method suitable for the reliability theory about the cable stayed bridge. After conducting the initial equilibrium analysis of the cable stayed bridge, the program which can conduct the linear and nonlinear stochastic finite element analysis using the perturbation method and the reliability analysis considered to the correlation of the random variable is developed. Using the results of this program about the cable stayed bridge, the characteristic of the node displacement, element force and cable tension according to the correlation of the random variable is investigated quantitatively. Also the reliability index and the failure probability are examined by the compounding the correlation of the random variable.

Thermal Fatigue Reliability of Solder Joints in a Thin Film Optical Filter Device (박막 광학 필터 디바이스의 패키징시 솔더 조인트의 피로 신뢰성 해석)

  • Lee, Sung-Chul;Hyun, Chung-Min;Lee, Hyung-Man;Kim, Myoung-Jin;Kim, Hwe-Kyung;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.677-684
    • /
    • 2004
  • Plastic and creep deformations of solder joints during thermal cycling are the main factors of misalignments and power losses in optical telecommunication components. Furthermore, the increased mismatch between solder Joint-bonded areas may cause severe failure in the components. Darveaux's creep model was implemented into a finite element program (ABAQUS) to simulate creep response of solder. Based on the finite element results, thermal fatigue reliability was predicted by using various fatigue life prediction models. Also, the effects of ramp conditions, dwelling time, and solder joint-embedding materials on the reliability were investigated under the thermal cycling conditions of the Telcordia schedule (-40∼75$^{\circ}C$).

Probabilistic optimal safety valuation based on stochastic finite element analysis of steel cable-stayed bridges

  • Han, Sung-Ho;Bang, Myung-Seok
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.89-110
    • /
    • 2012
  • This study was intended to efficiently perform the probabilistic optimal safety assessment of steel cable-stayed bridges (SCS bridges) using stochastic finite element analysis (SFEA) and expected life-cycle cost (LCC) concept. To that end, advanced probabilistic finite element algorithm (APFEA) which enables to execute the static and dynamic SFEA considering aleatory uncertainties contained in random variable was developed. APFEA is the useful analytical means enabling to conduct the reliability assessment (RA) in a systematic way by considering the result of SFEA based on linearity and nonlinearity of before or after introducing initial tensile force. The appropriateness of APFEA was verified in such a way of comparing the result of SFEA and that of Monte Carlo Simulation (MCS). The probabilistic method was set taking into account of analytical parameters. The dynamic response characteristic by probabilistic method was evaluated using ASFEA, and RA was carried out using analysis results, thereby quantitatively calculating the probabilistic safety. The optimal design was determined based on the expected LCC according to the results of SFEA and RA of alternative designs. Moreover, given the potential epistemic uncertainty contained in safety index, failure probability and minimum LCC, the sensitivity analysis was conducted and as a result, a critical distribution phase was illustrated using a cumulative-percentile.

A new methodology development for flood fragility curve derivation considering structural deterioration for bridges

  • Lee, Jaebeom;Lee, Young-Joo;Kim, Hyunjun;Sim, Sung-Han;Kim, Jin-Man
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.149-165
    • /
    • 2016
  • Floods have been known to be one of the main causes of bridge collapse. Contrary to earthquakes, flood events tend to occur repeatedly and more frequently in rainfall areas; flood-induced damage and collapse account for a significant portion of disasters in many countries. Nevertheless, in contrast to extensive research on the seismic fragility analysis for civil infrastructure, relatively little attention has been devoted to the flood-related fragility. The present study proposes a novel methodology for deriving flood fragility curves for bridges. Fragility curves are generally derived by means of structural reliability analysis, and structural failure modes are defined as excessive demands of the displacement ductility of a bridge under increased water pressure resulting from debris accumulation and structural deterioration, which are known to be the primary causes of bridge failures during flood events. Since these bridge failure modes need to be analyzed through sophisticated structural analysis, flood fragility curve derivation that would require repeated finite element analyses may take a long time. To calculate the probability of flood-induced failure of bridges efficiently, in the proposed framework, the first order reliability method (FORM) is employed for reducing the required number of finite element analyses. In addition, two software packages specialized for reliability analysis and finite element analysis, FERUM (Finite Element Reliability Using MATLAB) and ABAQUS, are coupled so that they can exchange their inputs and outputs during structural reliability analysis, and a Python-based interface for FERUM and ABAQUS is newly developed to effectively coordinate the fragility analysis. The proposed framework of flood fragility analysis is applied to an actual reinforced concrete bridge in South Korea to demonstrate the detailed procedure of the approach.

Comparative Study on Seismic Fragility Curve Derivation Methods of Buried Pipeline Using Finite Element Analysis (유한요소 해석을 활용한 매설 배관의 지진 취약도 곡선 도출 기법 비교)

  • Lee, Seungjun;Yoon, Sungsik;Song, Hyeonsung;Lee, Jinmi;Lee, Young-Joo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.213-220
    • /
    • 2023
  • Seismic fragility curves play a crucial role in assessing potential seismic losses and predicting structural damage caused by earthquakes. This study compares non-sampling-based methods of seismic fragility curve derivation, particularly the probabilistic seismic demand model (PSDM) and finite element reliability analysis (FERA), both of which require employing sophisticated finite element analysis to evaluate and predict structural damage caused by earthquakes. In this study, a three-dimensional finite element model of API 5L X65, a buried gas pipeline widely used in Korea, is constructed to derive seismic fragility curves. Its seismic vulnerability is assessed using nonlinear time-history analysis. PSDM and a FERA are employed to derive seismic fragility curves for comparison purposes, and the results are verified through a comparison with those from the Monte Carlo Simulation (MCS). It is observed that the fragility curves obtained from PSDM are relatively conservative, which is attributed to the assumption introduced to consider the uncertainty factors. In addition, this study provides a comprehensive comparison of seismic fragility curve derivation methods based on sophisticated finite element analysis, which may contribute to developing more accurate and efficient seismic fragility analysis.

Finite element and design code assessment of reinforced concrete haunched beams

  • Gulsan, Mehmet Eren;Albegmprli, Hasan M.;Cevik, Abdulkadir
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.423-438
    • /
    • 2018
  • This pioneer study focuses on finite element modeling and numerical modeling of three types of Reinforced Concrete Haunched Beams (RCHBs). Firstly, twenty RCHBs, consisting of three types, and four prismatic beams which had been tested experimentally were modeled via a nonlinear finite element method (NFEM) based software named as, ATENA. The modeling results were compared with experimental results including load capacity, deflection, crack pattern and mode of failure. The comparison showed a good agreement between the results and thus the model used can be effectively used for further studies of RCHB with high accuracy. Afterwards, new mechanism modes and design code equations were proposed to improve the shear design equation of ACI-318 and to predict the critical effective depth. These equations are the first comprehensive formulas in the literature involving all types of RCHBs. The statistical analysis showed the superiority of the proposed equation to their predecessors where the correlation coefficient, $R^2$ was found to be 0.89 for the proposed equation. Moreover, the new equation was validated using parametric and reliability analyses. The parametric analysis of both experimental and predicted results shows that the inclination angle and the compressive strength were the most influential parameters on the shear strength. The reliability analysis indicates that the accuracy of the new formulation is significantly higher as compared to available design equations and its reliability index is within acceptable limits.

A Numerical Analysis Study on Evaluation of the Reliability for Bellows in the Vehicle Exhaust System (수치해석에 의한 자동차 배기시스템의 벨로우즈 강도평가에 관한 연구)

  • Lee, S.H.;Sim, D.S.;Oh, S.G.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.77-82
    • /
    • 2005
  • Bellows is a familiar component in piping systems as it provides a relatively simple means of absorbing thermal expansion and providing system flexibility. In routine piping flexibility analysis by finite element methods, bellows is usually considered to be straight pipe runs modified by an appropriate flexibility factor; maximum stresses are evaluated using a corresponding stress concentration factor. In this paper, the dynamic characteristics of bellows were investigated by Finite element methods. Using Anany program, the natural frequencies and evaluation of the reliability of bellows were also investigated.

  • PDF

Reliability Analysis of Frame Strctures (뼈대구조의 신뢰성 해석)

  • 이정재;고재군;김한중
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.116-127
    • /
    • 1994
  • A reliability analysis model for the frame structure which grafts the discretized ideal plastic method to the stochastic finite element method is introduced. The proposed method simmulates realistically the sequencial occurrence of plastic hinges and yields the probability of failure directly from the geometrical and material properties of a frame structure. The presented method can also take into account the uncertainties inherent in loads and resisten- ces through the stochastic finite element technique. The analysis results are compared with those of the Monte Carlo Simmulation, the Bound Theory, and the fs-unzipping method, and show good agreement.

  • PDF