• 제목/요약/키워드: Finite difference sensitivity

검색결과 156건 처리시간 0.025초

SOLVING PARTIAL DIFFERENTIAL ALGEBRAIC EQUATIONS BY COLLOCATION AND RADIAL BASIS FUNCTIONS

  • Bao, Wendi;Song, Yongzhong
    • Journal of applied mathematics & informatics
    • /
    • 제30권5_6호
    • /
    • pp.951-969
    • /
    • 2012
  • In this paper, we propose a class of meshless collocation approaches for the solution of time dependent partial differential algebraic equations (PDAEs) in terms of a radial basis function interpolation numerical scheme. Kansa's method and the Hermite collocation method (HCM) for PDAEs are given. A sensitivity analysis of the solutions from different shape parameter c is obtained by numerical experiments. With use of the random collocation points, we have obtain the more accurate solution by the methods than those by the finite difference method for the PDAEs with index-2, i.e, we avoid the influence from an index jump of PDAEs in some degree. Several numerical experiments show that the methods are efficient.

선형 등가정하중을 이용한 비선형 거동 구조물의 최적설계 (II) - 구조예제 - (Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads (II) - Structural Examples -)

  • 박기종;박경진
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1061-1069
    • /
    • 2005
  • In part I of this papter Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is developed to conduct optimization for nonlinear behavior structures. The method/algorithm is also verified to show its convergency and optimality. In this present paper, the NROESL algorithm is applied to several structural problems with geometric and/or material nonlinearity. Conventional optimization with sensitivity analysis using the finite difference method is also applied to the same examples. The results of the optimizations are compared. The proposed method is very efficient and derives good solutions.

CAD 기반 최적설계 시스템을 활용한 공작기계 구조의 최적화 (Optimization of Machine Tool Structure using a CAD-based Optimal Design System)

  • 신정호;곽병만
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.926-931
    • /
    • 2001
  • In this paper a CAD-based optimal design system is introduced and applied to optimal design of machine tool structures. The system is designed to reduce manual interfacing effort. All the design activities such as selecting design variables, making FE meshes and FE analysis are integrated on a parametric CAD program. A user can easily select design variables by clicking a CAD model. To enhance the robustness and versatility, this system uses the finite difference method for the design sensitivity analysis. By taking a practical example of the design of the column of a horizontal machining center, it is shown that the software system is efficiently usable in industry establishing the goal of minimizing user intervention between various analysis and optimization activities.

  • PDF

A numerical analysis of precipitation recharge in the region of monsoon climates using an infiltration model

  • Koo, Min-Ho;Kim, Yongje
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.163-167
    • /
    • 2003
  • Based on the transient finite difference solution of Richards' equation, an infiltration model is developed to analyze temporal variation of precipitation recharge in the region of monsoon climates. Simulation results obtained by using time series data of 20-year daily precipitation and pan evaporation indicate that a linear relationship between the annual precipitation and the annual recharge holds for the soils under the monsoon climates with varying degrees of the correlation coefficient depending on the soil types. A sensitivity analysis reveals that the water table depth has little effects on the recharge for the sandy soil, whereas, for the loamy and silty soils, rise of the water table at shallow depths causes increase of evaporation by approximately 100㎜/yr and a corresponding decrease in recharge. A series of simulations for two-layered soils illustrate that the amount of recharge is dominantly determined by the soil properties of the upper layer, although the temporal variation of recharge is affected by both layers.

  • PDF

Sensitivity Property of Generalized CMAC Neural Network

  • Kim, Dong-Hyawn;Lee, In-Won
    • Computational Structural Engineering : An International Journal
    • /
    • 제3권1호
    • /
    • pp.39-47
    • /
    • 2003
  • Generalized CMAC (GCMAC) is a type of neural network known to be fast in learning. The network may be useful in structural engineering applications such as the identification and the control of structures. The derivatives of a trained GCMAC is relatively poor in accuracy. Therefore to improve the accuracy, a new algorithm is proposed. If GCMAC is directly differentiated, the accuracy of the derivative is not satisfactory. This is due to the quantization of input space and the shape of basis function used. Using the periodicity of the predicted output by GCMAC, the derivative can be improved to the extent of having almost no error. Numerical examples are considered to show the accuracy of the proposed algorithm.

  • PDF

Effective Sensing Volume of Terahertz Metamaterial with Various Gap Widths

  • Park, Sae June;Yoon, Sae A Na;Ahn, Yeong Hwan
    • Journal of the Optical Society of Korea
    • /
    • 제20권5호
    • /
    • pp.628-632
    • /
    • 2016
  • We studied experimentally and theoretically the vertical range of the confined electric field in the gap area of metamaterials, which was analyzed for various gap widths using terahertz time-domain spectroscopy. We measured the resonant frequency as a function of the thickness of poly(methyl methacrylate) in the range 0 to 3.2 μm to quantify the effective detection volumes. We found that the effective vertical range of the metamaterial is determined by the size of the gap width. The vertical range was found to decrease as the gap width of the metamaterial decreases, whereas the sensitivity is enhanced as the gap width decreases due to the highly concentrated electric field. Our experimental findings are in good agreement with the finite-difference time-domain simulation results. Finally, a numerical expression was obtained for the vertical range as a function of the gap width. This expression is expected to be very useful for optimizing the sensing efficiency.

유한차분적 설계민감도 해석에 의한 마이크로 스트립 라인의 형상 최적화 (Optimization of Microstrip Line by Finite Difference Design Sensitivity Analysis)

  • 김치형;한상준;최홍순;박일한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2330-2332
    • /
    • 2005
  • 마이크로 스트립 선로는 제작상의 편의성으로 인해 많은 형태의 초고주파 회로에 다양한 구조로 적용된다. 하지만 실제 설계과정에서 다양한 형상에 따른 전자기적 해석이 쉽지 않고, 구조상의 불연속성은 시스템의 성능을 감쇄 시키는 원인이 된다. 본 논문은 마이크로 스트립 라인의 전자파 특성을 해석하고, 이로 인해 최적의 형상을 찾는 방법을 제시한다. 이 최적화 방법으로 유한 차분법 설계민감도 해석 방법을 도입하여 형상을 변화 시키며, 전자파 해석 툴을 이용하여 해석된 결과를 바탕으로 설계민감도를 계산하고 수정하므로 형상 최적화를 이룬다.

  • PDF

Eulerian-Lagrangian Hybrid Numerical Method for the Longitudinal Dispersion Equation

  • Jun, Kyung-Soo;Lee, Kil-Seong
    • Korean Journal of Hydrosciences
    • /
    • 제5권
    • /
    • pp.85-97
    • /
    • 1994
  • A hybrid finite difference method for the longitudinal dispersion equation, which is based on combining the Holly-Preissmann scheme with fifth-degree Hermite interpolating polynomial and the generalized Crank-Nicholson scheme, is described and comparatively evaluated with other characteristics-based numerical methods. Longitudinal dispersion of an instantaneously-loaded pollutant source is simulated, and computational results are compared with the exact solution. The present method is free from wiggles regardless of the Courant number, and exactly reproduces the location of the peak concentration. Overall accuracy of the computation increases for smaller value of the weighting factor, $\theta$of the model. Larger values of $\theta$ overestimates the peak concentration. Smaller Courant number yields better accuracy, in general, but the sensitivity is very low, especially when the value of $\theta$ is small. From comparisons with the hybrid method using cubic interpolating polynomial and with splitoperator methods, the present method shows the best performance in reproducing the exact solution as the advection becomes more dominant.

  • PDF

최적화 기법과 분산 컴퓨팅을 이용한 재료 성형공정의 역문제에 관한 연구 (A Study on Inverse Problem of Materials Forming Process using Optimization Technique and Distributed Computing)

  • 최주호;오동길;하덕식;김준범
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.632-639
    • /
    • 2004
  • In this paper, an inverse problem of glass forming process is studied to determine a number of unknown heat transfer coefficients which are imposed as boundary conditions. An analysis program for transient heat conduction of axi-symmetric dimension is developed to simulate the forming and cooling process. The analysis is repeated until it attains periodic state, which requires at least 30 cycles of iteration. Measurements are made for the temperatures at several available time and positions of glass and moulds in operation. Heat removal by the cooling water from the plunger is also recorded. An optimization problem is formulated to determine heat transfer coefficients which minimize the difference between the measured data and analysis results. Significant time savings are achieved in finite difference based sensitivity computation during the optimization by employing distributed computing technique. The analysis results by the optimum heat transfer coefficients are found to agree well with the measured data.

하부 거울층을 이용한 AIGaAs/GaAs 완전 공핍 광 싸이리스터 특성 분석 (Analysis of AIGaAs/GaAs Depleted Optical Thyristor using bottom mirror)

  • 최운경;김두근;최영완
    • 대한전자공학회논문지SD
    • /
    • 제42권1호
    • /
    • pp.39-46
    • /
    • 2005
  • 본 연구에서는 광논리 및 광접속에 응용할 수 있는 GaAs/AIGaAs 구조의 완전 공핍 광 싸이리스터(depleted optical thyristor, DOT)에 1/4 파장 거울층 (quarter wavelength reflector stacks, QWRS)을 제작하여 특성을 측정 분석하였다. 바닥면에 위치한 QWRS는 광 방출 효율뿐만 아니라 흡수 효율을 증가시킨다. 바닥면에 QWRS를 넣은 것과 그렇지 않은 두가지의 DOT를 제작하여 비선형 S-자 형의 전류-전압 특성, 광 방출 효율 및 흡수 효율을 측정, 분석하였다. 하부 거울층을 삽입한 DOT와 기존의 DOT의 스위칭 변화는 각각 1.82 V와 1.52 V로 흡수효율에서 20 % 증가함을 보인다. 뿐만 아니라, 하부 거울층을 이용한 DOT는 기존의 소자에 비하여 발광 효율 면에서 최고 46 % 향상된 결과를 나타낸다. 스위칭 특성을 분석하기 위하여 순방향 전압에서 비선형 s-자형의 전류-전압 특성을, 역방향 전압에서 완전 공핍 전압을 모의실험을 통하여 알아보았다. 모의실험 방법으로 유한 차분 방법 (finite difference method, FDM)을 이용하여 최적화된 DOT 각 층의 두께와 도핑 농도를 구하였다.