• 제목/요약/키워드: Finite Volume

검색결과 1,929건 처리시간 0.029초

A Numerical Study on the Geometry of Jet Injection Nozzle of a Coanda Control Surface

  • Seo, Dae-Won;Kim, Jong-Hyun;Kim, Hyo-Chul;Lee, Seung-Hee
    • Journal of Ship and Ocean Technology
    • /
    • 제12권3호
    • /
    • pp.36-54
    • /
    • 2008
  • A jet stream applied tangential to a curved surface in fluid increases lift force by strengthening circulation around the surface and this phenomenon is known as the Coanda effect. Many experimental and numerical studies have been performed on the Coanda effect and the results found to be useful in various fields of aerodynamics. Recently, preliminary studies on Coanda control surface are in progress to look for practical application in marine hydrodynamics since various control surfaces are used to control behaviors of ships and offshore structures. In the present study, the performance of a Coanda control surface with different geometries of the jet injection nozzle was surveyed to assess applicability to ship rudders. A numerical simulation was carried out to study flow characteristics around a section of a horn type rudder subjected to a tangential jet stream. The RANS equations, discretized by a cell-centered finite volume method were used for this computation after verification by comparing to the experimental data available. Special attentions have been given to the sensitivity of the lift performance of a Coanda rudder to the location of the slit (outlet) and intake of the gap between the horn and rudder surface at the various angles of attack. It is found that the location of the water intake is important in enhancing the lift because the gap functions as a conduit of nozzle generating a jet sheet on the rudder surface.

KRISO 대형 캐비테이션터널 시험조건의 함정 모형선 반류에 대한 수치해석적 연구 (Numerical Analysis of the Wake of a Surface Ship Model Mounted in KRISO Large Cavitation Tunnel)

  • 박일룡;김제인;김기섭;안종우;박영하;김명수
    • 대한조선학회논문집
    • /
    • 제53권6호
    • /
    • pp.494-502
    • /
    • 2016
  • The accurate assessment of hull-appendage interaction in the early design stage is important to control the inflow to the propeller plane, which can cause undesirable hydrodynamic effects in terms of cavitation phenomenon. This paper describes a numerical analysis for the flow around a fully appended surface ship model for which KRISO has carried out a model test in the Large Cavitation Tunnel(LCT). This numerical study was performed with the LCT model test in a complementary manner for a good reproduction of the wake distribution of surface ships. A second order accurate finite volume method provided by a commercial computational fluid dynamics(CFD) program was used to solve the governing Reynolds Averaged Navier-Stokes(RANS) equations, where the SST $k-{\omega}$ model was used for turbulence closure. The numerical results were compared to available LCT experimental data for validation. The calculations gave good predictions for the boundary layer profiles on the walls of the empty cavitation tunnel and the wake at the propeller plane of the fully appended hull model in the LCT.

Computational analysis of the electromechanical performance of mitral valve cerclage annuloplasty using a patient-specific ventricular model

  • Lee, Kyung Eun;Kim, Ki Tae;Lee, Jong Ho;Jung, Sujin;Kim, June-Hong;Shim, Eun Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권1호
    • /
    • pp.63-70
    • /
    • 2019
  • We aimed to propose a novel computational approach to predict the electromechanical performance of pre- and post-mitral valve cerclage annuloplasty (MVCA). Furthermore, we tested a virtual estimation method to optimize the left ventricular basement tightening scheme using a pre-MVCA computer model. The present model combines the three-dimensional (3D) electromechanics of the ventricles with the vascular hemodynamics implemented in a lumped parameter model. 3D models of pre- and post-MVCA were reconstructed from the computed tomography (CT) images of two patients and simulated by solving the electromechanical-governing equations with the finite element method. Computed results indicate that reduction of the dilated heart chambers volume (reverse remodeling) appears to be dependent on ventricular stress distribution. Reduced ventricular stresses in the basement after MVCA treatment were observed in the patients who showed reverse remodeling of heart during follow up over 6 months. In the case who failed to show reverse remodeling after MVCA, more virtual tightening of the ventricular basement diameter than the actual model can induce stress unloading, aiding in heart recovery. The simulation result that virtual tightening of the ventricular basement resulted in a marked increase of myocardial stress unloading provides in silico evidence for a functional impact of MVCA treatment on cardiac mechanics and post-operative heart recovery. This technique contributes to establishing a pre-operative virtual rehearsal procedure before MVCA treatment by using patient-specific cardiac electromechanical modeling of pre-MVCA.

Skin Dose Comparison of CyberKnife and Helical Tomotherapy for Head-and-Neck Stereotactic Body Radiotherapy

  • Yoon, Jeongmin;Park, Kwangwoo;Kim, Jin Sung;Kim, Yong Bae;Lee, Ho
    • 한국의학물리학회지:의학물리
    • /
    • 제30권1호
    • /
    • pp.1-6
    • /
    • 2019
  • Purpose: This study conducts a comparative evaluation of the skin dose in CyberKnife (CK) and Helical Tomotherapy (HT) to predict the accurate dose of radiation and minimize skin burns in head-and-neck stereotactic body radiotherapy. Materials and Methods: Arbitrarily-defined planning target volume (PTV) close to the skin was drawn on the planning computed tomography acquired from a head-and-neck phantom with 19 optically stimulated luminescent dosimeters (OSLDs) attached to the surface (3 OSLDs were positioned at the skin close to PTV and 16 OSLDs were near sideburns and forehead, away from PTV). The calculation doses were obtained from the MultiPlan 5.1.2 treatment planning system using raytracing (RT), finite size pencil beam (FSPB), and Monte Carlo (MC) algorithms for CK. For HT, the skin dose was estimated via convolution superposition (CS) algorithm from the Tomotherapy planning station 5.0.2.5. The prescribed dose was 8 Gy for 95% coverage of the PTV. Results and Conclusions: The mean differences between calculation and measurement values were $-1.2{\pm}3.1%$, $2.5{\pm}7.9%$, $-2.8{\pm}3.8%$, $-6.6{\pm}8.8%$, and $-1.4{\pm}1.8%$ in CS, RT, RT with contour correction (CC), FSPB, and MC, respectively. FSPB showed a dose error comparable to RT. CS and RT with CC led to a small error as compared to FSPB and RT. Considering OSLDs close to PTV, MC minimized the uncertainty of skin dose as compared to other algorithms.

Development of a drift-flux model based core thermal-hydraulics code for efficient high-fidelity multiphysics calculation

  • Lee, Jaejin;Facchini, Alberto;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1487-1503
    • /
    • 2019
  • The methods and performance of a pin-level nuclear reactor core thermal-hydraulics (T/H) code ESCOT employing the drift-flux model are presented. This code aims at providing an accurate yet fast core thermal-hydraulics solution capability to high-fidelity multiphysics core analysis systems targeting massively parallel computing platforms. The four equation drift-flux model is adopted for two-phase calculations, and numerical solutions are obtained by applying the Finite Volume Method (FVM) and the Semi-Implicit Method for Pressure-Linked Equation (SIMPLE)-like algorithm in a staggered grid system. Constitutive models involving turbulent mixing, pressure drop, and vapor generation are employed to simulate key phenomena in subchannel-scale analyses. ESCOT is parallelized by a domain decomposition scheme that involves both radial and axial decomposition to enable highly parallelized execution. The ESCOT solutions are validated through the applications to various experiments which include CNEN $4{\times}4$, Weiss et al. two assemblies, PNNL $2{\times}6$, RPI $2{\times}2$ air-water, and PSBT covering single/two-phase and unheated/heated conditions. The parameters of interest for validation include various flow characteristics such as turbulent mixing, spacer grid pressure drop, cross-flow, reverse flow, buoyancy effect, void drift, and bubble generation. For all the validation tests, ESCOT shows good agreements with measured data in the extent comparable to those of other subchannel-scale codes: COBRA-TF, MATRA and/or CUPID. The execution performance is examined with a mini-sized whole core consisting of 89 fuel assemblies and for an OPR1000 core. It turns out that it is about 1.5 times faster than a subchannel code based on the two-fluid three field model and the axial domain decomposition scheme works as well as the radial one yielding a steady-state solution for the OPR1000 core within 30 s with 104 processors.

직조 복합재료의 구조적 특성을 고려한 모델링 기법 및 물성 예측 기법 개발 (Development of Modeling Technique and Material Prediction Method Considering Structural Characteristics of Woven Composites)

  • 최경희;황연택;김희준;김학성
    • Composites Research
    • /
    • 제32권5호
    • /
    • pp.206-210
    • /
    • 2019
  • 직조 구조의 복합재의 쓰임이 자동차, 항공 산업 등 여러 분야로 확장됨에 따라, 직조 복합재의 신뢰성 문제 및 물성예측에 대한 필요성이 대두되었다. 본 연구에서는 직조 구조가 다른 복합재료의 물성 예측을 위한 유한요소해석을 수행하여 실험으로 얻은 정적 물성과의 유사성을 검증하였고, 효과적인 모델링 방법을 개발하였다. 직조 구조의 특성을 반영하기 위하여 모델링은 메소 스케일의 대표 체적 요소(RVE)를 이용하였다. 섬유 다발과 순수 기지를 분리하여 3차원 모델링을 진행하였다. 하신 파괴 기준(Hashin's failure criteria)을 적용하여 요소의 파괴 유무를 판단하였고, 해석 모델은 복합재에 적합한 점진적 파괴 모델을 사용하였다. 최종적으로, 직조 구조에 따른 복합재의 물성을 성공적으로 예측하여 본 모델링 및 해석 기법에 대한 적합성을 검증하였다.

금속 보스 압력분포비 설계 변경에 따른 복합재 연소관 파열압력에 관한 연구 (A Study on the Burst Pressure of Composite Motor Case due to the Change of Metal Boss PDR Design)

  • 김남조;정승민;윤경수;정상기;황태경
    • 한국추진공학회지
    • /
    • 제23권4호
    • /
    • pp.21-27
    • /
    • 2019
  • 연소가스에 의한 내압 조건에서 필라멘트 와인딩 공법으로 제작되는 복합재 연소관은 돔에서 구조적으로 취약해진다. 본 논문에서는 압력분포비(PDR) 변화에 따른 복합재 돔의 파열압력을 비교하기 위해 유한 요소 해석을 수행하였다. 돔 내/외면 응력, 금속 보스 체적을 산출함으로써, 정량적으로 복합재 연소관의 성능을 비교하였다. 그 결과, PDR 2.5-3.0에서 파손 모드의 임계점이 존재함을 확인하였다. PDR 2.5-3.5 설계는 연소관 파열압력의 변동 없이 금속 보스 무게 감량이 가능하며, 돔 형상 및 오프닝 크기에 대해 설계 기준값이 변경되므로 해석 및 시험을 통한 규명이 필요하다.

지반의 팽창성을 고려한 터널의 테르자기 토압공식 수정 (Modification of Terzaghi's Earth Pressure Formula on Tunnel Considering Dilatancy of Soil)

  • 한희수;조재호;양남용;신백철
    • 한국지반환경공학회 논문집
    • /
    • 제12권11호
    • /
    • pp.23-30
    • /
    • 2011
  • 본 연구에서는 터널의 상부에 작용하는 토압을 평가하는데 있어서 기존의 Terzaghi 공식이 가지는 문제점을 해결하기 위해 흙의 팽창성(Dilatancy)을 고려하여 Terzaghi 공식을 수정하였다. Terzaghi 공식과 수정식에 대한 수학적 해석결과, 터널의 토압은 수정식이 Terzaghi 공식에 비해 작게 나타났으며 토피고가 커질수록 그 차이는 증가하였다. 터널모형실험 결과와 비교해 본 결과, Terzaghi 공식에 의해 계산된 상부토압은 굴착 전 토압의 약 70%이며, 수정식에 의하면 약 60% 정도로 나타났고, 터널모형실험에 의해 측정된 토압은 약 40% 정도 임을 볼 수 있었다. 또한 유한요소해석을 이용하여 Terzaghi 공식과 수정식에 의해 산정된 터널 상부토압과 전단변형률을 비교해본 결과 수학적 해석결과와 동일하게 수정식이 Terzaghi 공식보다 작게 나타났다.

Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Xu, Yi-Peng;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.477-496
    • /
    • 2021
  • The main objective of this paper is to study vibration of sandwich open cylindrical panel with damaged core and FG face sheets based on three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution and boundary conditions. It is seen that for the large amount of power-law index "P", increasing this parameter does not have significant effect on the non-dimensional natural frequency parameters of the FG sandwich curved panel. Results indicate that by increasing the value of isotropic damage parameter "D" up to the unity (fully damaged core) the frequency would tend to become zero. One can dictate the fiber variation profile through the radial direction of the sandwich panel via the amount of "P", "b" and "c" parameters. It should be noticed that with increase of volume fraction of fibers, the frequency parameter of the panels does not increase necessarily, so by considering suitable amounts of power-law index "P" and the parameters "b" and "c", one can get dynamic characteristics similar or better than the isotropic limit case for laminated FG curved panels.

이론적 열유동 및 랜덤 진동 해석을 적용한 EPS 보냉용기의 포장설계 (Packaging Design of EPS Cooling Box by Theoretical Heat Flow and Random Vibration Analysis)

  • 김수현;박상훈;이민아;정현모
    • 한국포장학회지
    • /
    • 제27권3호
    • /
    • pp.175-180
    • /
    • 2021
  • Although it has recently been regulated for use as an eco-friendly policy in Korea, the use of EPS (Expanded Polystyrene) cooling boxes, which are used as cold chain delivery insulation boxes for fresh agricultural and livestock products, is also increasing rapidly as e-commerce logistics such as delivery have increased rapidly due to COVID-19. Studies were conducted to optimize the EPS cooling container through internal air heat flow of CFD (Computational Fluid Dynamics) analysis and FEM (Finite Element Method) random vibration analysis using domestic PSD (Power Spectral Density) profile of the EPS cooling box to which the refrigerant is applied in this study. In the analysis of the internal air heat flow by the refrigerant in the EPS cooling box, the application of vertical protrusions inside was excellent in volume heat flow and internal air temperature distribution. In addition, as a result of random vibration analysis, the internal vertical protrusion gives the rigid effect of the cooling box, so that displacement and stress generation due to vibration during transport are smaller than that of a general cooling container without protrusion. By utilizing the resonance point (frequency) of the EPS cooling box derived by the Model analysis of ANSYS Software, it can be applied to the insulation and cushion packaging design of the EPS product line, which is widely used as insulation and cushion materials.