• 제목/요약/키워드: Finite Thrust

검색결과 317건 처리시간 0.032초

운전 상태에서의 터보차저 축 추력 예측 (Prediction of Axial Thrust Load under Turbocharger Operating Conditions)

  • 이인범;홍성기;김영철;최복록
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.642-648
    • /
    • 2016
  • This paper deals with an analytical and experimental investigation to predict the axial thrust load that results from turbocharger operating conditions. The Axial forces acting on the turbocharger thrust bearing are caused by the unbalance between turbine wheel gas forces and compressor wheel air forces. It has a great influence on the friction losses, which reduces the efficiency and performance of high-speed turbocharger. This paper presents the calculation procedure for the axial thrust forces under operating conditions in a turbocharger. The first step is to determine the relationship between thrust forces and strains by experimental and numerical methods. The analysis results were verified by measuring the strains on a thrust bearing with the specially designed test device. And then, the operating strains and temperatures were measured to inversely calculate the thrust strains which were compensated the thermal effects. Therefore it's possible to calculate the magnitudes of the thrust forces under operating turbocharger by comparing the regenerated strains with the rig test results. It will possible to optimize the design of a thrust bearing for reducing the mechanical friction losses using the results.

반응표면분석법을 이용한 리니어모터의 형상최적설계 (Optimal Geometric Design of Linear Motor Using Response Surface Methodology)

  • 이태원
    • 대한기계학회논문집A
    • /
    • 제29권9호
    • /
    • pp.1262-1269
    • /
    • 2005
  • Thrust of linear motor is one of the important factor to specify motor performance. Maximum thrust can be obtained by increasing the current in conductor and is relative to the sizes of conductor and magnet. But, the current and the size of conductor have an effect on temperature of linear motor. Therefore, it is practically important to find design results that can effectively maximize the thrust of linear motor within limited range of temperature. Finite element analysis was applied to calculate thrust and the temperature of the conductor was calculated by the thermal resistance. The diameter of copper wire among design variables has discrete value and number of turns must be integer. Considering these facts, special techinque for optimum design is presented. To reduce excessive computation time of thrust in optimization, the design variables was redefined by analysis of variance and second order regression model for thrust was determined by response surface metheodology. As a result, it is shown that the proposed method has an advantage in optimum design of linear motor.

고속 복합재료 공기 주축부를 위한 추력베어링 설계 (Thrust Bearing Design for High-Speed Composite Air Spindles)

  • 방경근;이대길
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.1997-2007
    • /
    • 2002
  • Composite air spindles are appropriate for the high-speed and the high-precision machining as small hole drilling of printed circuit board (PCB) or wafer cutting for manufacturing semiconductors because of the low rotational inertia, the high damping ratio and the high fundamental natural frequency of composite shaft. The axial load and stiffness of composite air spindles fur drilling operation are determined by the thrust ben ring composed of the air supply part mounted on the housing and the rotating part mounted on the rotating shaft. At high-speed rotation, the rotating part of the thrust bearing should be designed considering the stresses induced by centrifugal force as well as the axial stiffness and the natural frequency of the rotating shaft to void the shaft from failure due to the centrifugal force and resonant vibration. In this work, the air supply part of the thrust bearing was designed considering the bending stiffness of the bearing and the applied load. The rotating part of the thrust bearing was designed through finite element analysis considering the cutting forces during manufacturing as well as the static and dynamic characteristics under both the axial and con trifugal forces during high-speed rotation.

추력 리플 저감을 위한 PMLSM의 최적설계 (Optimal Design of Permanent Magnet Linear Synchronous Motor for Reducing Thrust Ripple)

  • 김성일;홍정표;조한익
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.265-268
    • /
    • 2005
  • This paper deals with the optimal design of a permanent magnet linear synchronous motor (PMLSM) with the analysis of prototype PMLSM. In the PMLSM, thrust ripple is one of the causes disturbing high-precision position control. Therefore, Response surface methodology (RSM), one of the optimization methods, is applied to obtain the shape decreasing thrust ripple of the prototype PMLSM. In the end, characteristic analysis of the PMLSM is performed by space harmonic method for shortening of a computation time, and final results is verified by finite element analysis.

  • PDF

3차원 열전달을 고려한 틸팅패드 스러스트 베어링의 해석 (Three-Dimensional Beat Transfer Analysis on Tilting-Pad Thrust Bearings)

  • 김호종;최성필;하현천
    • Tribology and Lubricants
    • /
    • 제22권4호
    • /
    • pp.173-181
    • /
    • 2006
  • In the present study, we developed a numerical analysis software to predict performance of tilting-pad thrust bearings. The finite element method was adopted to compute lubricant film pressure and temperature. Three-dimensional heat transfer equations were solved simultaneously for the lubricant film, pad, and runner. Groove temperature was assumed with two different models. From application of the software to a thrust bearing, it has been seen that the three-dimensional analysis predicts higher temperature than the average temperature analysis. It has also been found that the groove model with a hot-oil-carry-over factor predicts higher temperature.

Analysis on Thrust Characteristics of Slotless Iron-Cored PMLSM According to PM Magnetization Patterns

  • Jang Seok-Myeong;You Dae-Joon;Lee Sung-Ho;Jang Won-Bum
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권1호
    • /
    • pp.27-33
    • /
    • 2005
  • The development of modern high-energy magnet materials has allowed the replacement of field coils in many different types of electromagnetic energy conversion machines. As well, the linear synchronous motor has recently been proposed for linear motion with high efficiency and thrust. Thus, this paper presents an analytical solution for the high thrust and cost reduction of the Iron-Cored Permanent Magnet Linear Synchronous Motor (PMLSM) considering magnetization arrays and geometry. Hence, the superior utilization points in each of the magnetization arrays are provided by the height ratio of the magnet/air-gap and magnet/winding coil, etc. In formulation, the space harmonic method in analytical solutions and the generalized 2-D tensor finite element analysis can be used to evaluate force components in magneto static devices including the magnetostrictive phenomenon.

치형상에 따른 2상 HB형 Linear Stepping Motor의 추력 및 수직력 특성에 관한 연구 (A Study on the Thrust and Normal Force Characteristics according to Tooth Shape of 2-Phase HB Type Linear Stepping Motor)

  • 이상호;신미영;하장호
    • 한국산업융합학회 논문집
    • /
    • 제4권3호
    • /
    • pp.275-279
    • /
    • 2001
  • In this paper, We have designed the new tooth shape in order to improve the thrust and normal force of HLSM. Also it was analyzed by Finite Element Method and Virtual Work Method. As a result this paper, it was confirmed that the thrust and normal force was improved considerably.

  • PDF

유한요소법을 이용한 2상 HB형 Linear Slapping Motor의 추력 특성 개선에 관한 연구 (A Study on Thrust Characteristics of Two-Phase HB Type LSM Using FEM)

  • 이상호;정도영;이봉섭;신미영;최경호;정원석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.894-896
    • /
    • 2000
  • In this paper, we have designed the advanced DVT HLSM inserted a permanent magnet into the slot in order to improve the thrust force without increasing the normal force. And it was analyzed the characteristics of thrust force and normal force of the new HLSM by using Finite Element Method and Virtual Work Method. As a result of this paper it was confirmed that the thrust force characteristics of the new HLSM improved about 23% in comparision with DVT HLSM without increasing the normal force.

  • PDF

Experimental Study on Performance of a Propulsive Nozzle with a Blower Piping System

  • Sakamoto, Masahiko
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권4호
    • /
    • pp.213-221
    • /
    • 2013
  • The characteristics of the thrust for ship propulsion equipment directly driven by air compressed by pressure fluctuation in a blower piping system are investigated. The exhaust valve is positioned upon the air ejection hole in the discharge pipe in order to induce the large-scale pressure fluctuation, and the effects of the valve on the pressure in the pipes and the thrust for the propulsive nozzle are examined. The pressure in the pipes decreases immediately after the valve is opened, and it increases just before the valve is closed. The thrust for the propulsive nozzle monotonically increases with increasing number of revolutions and depth. The interfacial wave in the nozzle appears in the frequency of approximately 4Hz, and it is important for the increase of the thrust to synchronize the opening-closing cycle for the exhaust valve with the generation frequency of the interfacial wave. The finite difference lattice Boltzmann method is helpful to investigate the characteristics of the flow in the nozzle.

가동 영구자석형 PMLSM 추력리플 최소화를 위한 영구자석 형상 최적화 (Permanent Magnet Shape Optimization of Moving Magnet type PMLSM for Thrust Ripple Minimization)

  • 윤강준;이동엽;김규탁
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권2호
    • /
    • pp.53-59
    • /
    • 2005
  • In this paper, optimum shape design of permanent magnet in slotted type Permanent Magnet Linear Synchronous Motor(PMLSM) is progressed for minimization of detent force owing to structure of slot-teeth and thrust ripple by harmonic magnetic flux of permanent magnet. In order to reduce remodeling time as changing design parameter for Permanent Magnet shape optimization, the moving model node technique was applied. The characteristics of thrust and detent force computed by finite element analysis are acquired equal effect both skewed basic model and optimum model which is optimization of permanent magnet shape. In addition to, thrust per unit volume is improved 4.l2[%] in optimum model.