• Title/Summary/Keyword: Finite Line Sources

Search Result 12, Processing Time 0.018 seconds

Analysis on Temperature Distribution and Current-Carrying Capacity of GIL Filled with Fluoronitriles-CO2 Gas Mixture

  • Chen, Geng;Tu, Youping;Wang, Cong;Cheng, Yi;Jiang, Han;Zhou, Hongyang;Jin, Hua
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2402-2411
    • /
    • 2018
  • Fluoronitriles-$CO_2$ gas mixtures are promising alternatives to $SF_6$ in environmentally-friendly gas-insulated transmission lines (GILs). Insulating gas heat transfer characteristics are of major significance for the current-carrying capacity design and operational state monitoring of GILs. In this paper, a three-dimensional calculation model was established for a GIL using the thermal-fluid coupled finite element method. The calculated results showed close agreement with experimentally measured data. The temperature distribution of a GIL filled with the Fluoronitriles-$CO_2$ mixture was obtained and compared with those of GILs filled with $CO_2$ and $SF_6$. Furthermore, the effects of the mixture ratio of the component gases and the gas pressure on the temperature rise and current-carrying capacity of the GIL were analyzed. Results indicated that the heat transfer performance of the Fluoronitriles-$CO_2$ gas mixture was better than that of $CO_2$ but worse than that of $SF_6$. When compared with $SF_6$, use of the Fluoronitriles-$CO_2$ gas mixture caused a reduction in the GIL's current-carrying capacity. In addition, increasing the Fluoronitriles gas component ratio or increasing the pressure of the insulating gas mixture could improve the heat dissipation and current-carrying capacity of the GIL. These research results can be used to design environmentally-friendly GILs containing Fluoronitriles-$CO_2$ gas mixtures.

Impact of Different Boundary Conditions in Generating g-function on the Sizing of Ground Heat Exchangers (경계 조건에 따른 지열 응답 함수의 차이가 수직형 지열 교환기 길이 산정에 미치는 영향)

  • Kim, Eui-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.6
    • /
    • pp.263-268
    • /
    • 2014
  • Eskilson's g-function, a well-known geothermal heat response factor, is widely used for sizing of the ground heat exchangers. Unlike the Eskilson's original model that uses common temperature boundaries for all boreholes and along the borehole height, an analytical-solution-based g-function uses a uniform heat transfer rate over the height with variable heat transfer rates for respective boreholes. To evaluate the impact of such a boundary difference on g-function and the design length, a simple case study was carried out on the cooling-dominant commercial buildings. The results show that the design lengths given by the boundary of uniform heat transfer rates are longer than those given by Eskilson's boundary for all cases tested. The difference in length is more important when the bore field is composed of more boreholes with shorter length of each borehole.