• Title/Summary/Keyword: Finite Element Analysis ANSYS 5.5

Search Result 186, Processing Time 0.024 seconds

Analytical solutions for skewed thick plates subjected to transverse loading

  • Chun, Pang-Jo;Fu, Gongkang;Lim, Yun Mook
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.549-571
    • /
    • 2011
  • This paper presents analytical solutions for skewed thick plates under transverse loading that have previously been unreported in the literature. The thick plate solution is obtained in a framework of an oblique coordinate system. The governing equation is first derived in the oblique coordinate system, and the solution is obtained using deflection and rotation as partial derivatives of a potential function developed in this research. The solution technique is applied to three illustrative application examples, and the results are compared with numerical solutions in the literature and those derived from the commercial finite element analysis package ANSYS 11. These results are in excellent agreement. The present solution may also be used to model skewed structures such as skewed bridges, to facilitate efficient routine design or evaluation analyses, and to form special elements for finite element analysis. At the same time, the analytical solution developed in this research could be used to develop methods to address post-buckling and dynamic problems.

Simulation and experimental analysis of active vibration control of smart beams under harmonic excitation

  • Malgaca, L.;Karagulle, H.
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.55-68
    • /
    • 2009
  • In the present study, active control of a smart beam under forced vibration is analyzed. The aluminum smart beam is composed of two piezoelectric patches and strain gauge. One of the piezoelectric patches is used as controlling actuator while the other piezoelectric patch is used as vibration generating shaker. The smart beam is harmonically excited by the piezoelectric shaker at its fundamental frequency. The strain gauge is utilized to sense the vibration level. Active vibration reduction under harmonic excitation is achieved using both strain and displacement feedback control. Control actions, the finite element (FE) modeling and analyses are directly carried out by using ANSYS parametric design language (APDL). Experimental applications are performed with LabVIEW. Dynamic behavior at the tip of the beam is evaluated for the uncontrolled and controlled responses. The simulation and experimental results are compared. Good agreement is observed between simulation and experimental results under harmonic excitation.

Modelling of bonded and unbonded post-tensioned concrete flat slabs under flexural and thermal loading

  • Mohammed, Abbas H.;Taysi, Nildem
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.595-606
    • /
    • 2017
  • During their life span, post-tensioned concrete structures may be exposed to thermal loads. Therefore, there has been a growing interest in research on the advanced analysis and design of post-tensioned concrete slabs subjected to thermal loads. This paper investigates the structural behaviour of post-tensioned one-way spanning concrete slabs. A nonlinear finite element model for the analysis of post- tensioned unbonded and bonded concrete slabs at elevated temperatures was developed. The interface between the tendon and surrounding concrete was also modelled, allowing the tendon to retain its profile shape during the deformation of the slab. The load-deflection behaviour, load-force behaviour in the tendon, and the failure modes are presented. The numerical analysis was conducted by the finite element ANSYS software and was carried out on two different one-way concrete slabs chosen from literature. A parametric study was conducted to investigate the effect of several selected parameters on the overall behavior of post-tensioned one-way concrete slab. These parameters include the effect of tendon bonding, the effect of thermal loading and the effect of tendon profile. Comparison between uniform thermal loading and nonuniform thermal loading showed that restrained post tensioned slab with bottom surface hotter has smaller failure load capacity.

Stress distribution of oval and circular fiber posts in amandibular premolar: a three-dimensional finite element analysis

  • Er, Ozgur;Kilic, Kerem;Esim, Emir;Aslan, Tugrul;Kilinc, Halil Ibrahim;Yildirim, Sahin
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.434-439
    • /
    • 2013
  • PURPOSE. The aim of the present study was to evaluate the effects of posts with different morphologies on stress distribution in an endodontically treated mandibular premolar by using finite element models (FEMs). MATERIALS AND METHODS. A mandibular premolar was modeled using the ANSYS software program. Two models were created to represent circular and oval fiber posts in this tooth model. An oblique force of 300 N was applied at an angle of $45^{\circ}$ to the occlusal plane and oriented toward the buccal side. von Mises stress was measured in three regions each for oval and circular fiber posts. RESULTS. FEM analysis showed that the von Mises stress of the circular fiber post (426.81 MPa) was greater than that of the oval fiber post (346.34 MPa). The maximum distribution of von Mises stress was in the luting agent in both groups. Additionally, von Mises stresses accumulated in the coronal third of root dentin, close to the post space in both groups. CONCLUSION. Oval fiber posts are preferable to circular fiber posts in oval-shaped canals given the stress distribution at the postdentin interface.

Modal analysis and multi-objective optimization of lightweight analysis of the main beam of the concrete spreader

  • Zhang, Shiying;Song, Bo;Zhang, Ke;Chen, Hongliang;Zou, Defang;Liu, Chang;Zhu, Chunxia;Li, Dong;Yu, Wenda
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.465-478
    • /
    • 2021
  • On the premise of ensuring that the static performance of the concrete spreader is met, the first-order natural frequency of the concrete spreader is increased, and the weight of the main beam is reduced. ANSYS is used as an analysis tool to perform modal analysis on the concrete spreader. The natural frequency, mode shape and modal test verification will be obtained to ensure the accuracy of finite element model analysis. Using the ANSYS designxplorer module, the size of the main beam is set, and the response surface model between the parameter variables and the optimization objective is established according to the experimental design points. Screening algorithm and MOGA algorithm are used to multi-optimize the stress, first-order natural frequency and girder weight, and the optimal solution is obtained by comparison. The results of modal analysis are consistent with those of the experiment, and a set of optimal solutions is obtained through the optimization algorithm. The optimal solution obtained can meet the purpose of increasing the first-order natural frequency of the concrete spreader and reducing the weight of the main beam under the premise of ensuring the overall dynamic and static performance of the concrete spreader.

Finite Element Analysis of Mechanical Properties of a Balloon-Expandable Stent (풍선확장식 스텐트의 기계적 특성에 대한 유한요소해석)

  • Oh, Byung-Ki;Cho, Hae-Yong;Kim, Yong-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.915-922
    • /
    • 2004
  • A stent is small tube-like structure expanded into stenotic arteries to restore blood flow. The stent expansion behaviors define the effectiveness of the surgical operation. In this paper, finite-element method was employed to analyze expansion behaviors and fatigue life of a typical diamond-shaped balloon-expandable stent. Beyond safety considerations, this type of analysis provides mechanical properties that are often difficult to obtain by experiments. Mechanical properties of the stent expansion pressure, radial recoil, longitudinal recoil and foreshortening were simulated using commercial FEM code, ANSYS and fatigue life were estimated using NISAII ENDURE. The FEM results showed that the pressures necessary to expand the stent up to a diameter of 3mm, 4mm and 5mm were 0.75MPa, 0.82MPa and 0.97MPa. The fatigue lifes according to expansion diameter were 114${\times}$10$^{7}$cycles, 714${\times}$$^{6}$cycles and 163${\times}$10$^{6}$cycles. As a result, a finite element model used in this study can simulate expansion behaviors of stents and should be useful to design new stents or analyze actual stents.

Three Dimensional Stress Analysis of a Dental Implant with Central Cavity (중공을 가지는 치과용 임플란트의 3차원 응력해석)

  • Kim, Jin-Gon;Lee, Jae-Kon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2197-2202
    • /
    • 2011
  • In this study, we propose a new short dental implant and investigate its bio-mechanical characteristics by using three dimensional finite element analyses. The proposed dental implant has the central cavity which can be integrated with the core of cancellous bone remained by trepanning drill. We take the Bicon short implant as a reference model for studying the effects according to the shape of cavity. The parametric finite element model using ANSYS APDL has been built to determine which length, diameter and thread of central cavity would be effective to dissipate stress. The reduction of undesirable stress in adjacent bone which can suppress bone defects and the eventual failure of implants. The numerical results shows that the cavity of well-determined shape has the beneficial effects on reducing the bone absorption in cancellous bone.

Behavior of reinforced lightweight aggregate concrete hollow-core slabs

  • Al-Azzawi, Adel A.;Al-Aziz, Basma M. Abdul
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.117-126
    • /
    • 2018
  • This research investigate the behavior of reinforced normal and lightweight aggregate concrete hollow core slabs with different core shapes, shear span to effective depth (a/d). The experimental work includes testing seven reinforced concrete slabs under two vertical line loads. The dimensions of slab specimens were (1.1 m) length, (0.6 m) width and (0.12 m) thickness. The maximum reduction in weight due to aggregate type was (19.28%) and due to cross section (square and circular) cores was (17.37 and 13.64%) respectively. The test results showed that the decrease of shear span to effective depth ratio from 2.9 to 1.9 for lightweight aggregate solid slab cause an increase in ultimate load by (29.06%) and increase in the deflection value at ultimate load or the ultimate deflection by (17.79%). The use of lightweight aggregate concrete in casting solid slabs give a reduction in weight by (19.28%) and in the first cracking and ultimate loads by (16.37%) and (5%) respectively for constant (a/d=2.9).The use of lightweight aggregate concrete in casting hollow circular core slabs with constant (a/d=2.9) (reduction in weight 32.92%) decrease the cracking and ultimate loads by (12%) and (5.18%) respectively with respect to the solid slab. These slab specimens were analyzed numerically by using the finite element computer program ANSYS. Good agreements in terms of behavior, cracking load (load at first visible crack) and ultimate load (maximum value of testing load) was obtained between finite element analysis and experimental test results.

Multiplication of Displacements of the Langevin Type Piezoelectric Transducer using Various Shapes of Horns

  • Park, Tae-Gone;Kim, Myong-Ho;Park, Min-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.2
    • /
    • pp.61-65
    • /
    • 2004
  • Bolt-tightened Langevin type vibrators using longitudinal mode of bar were designed and fabricated. In order to amplify the displacement of the tip of the vibrators, stacked ceramics were used and five different shapes of the horns were designed and jointed. Resonant frequencies and vibration characteristics of vibrators and horns were analyzed by ANSYS(finite element analysis computer program), and the displacements of tips of the horns were measured. As results, when the numbers of the stacked ceramics were increased, the displacements of the tips were increased and the driving voltages were decreased. Step l horn (BLT-St1) showed maximum displacement of 36.92 $\mu\textrm{m}$ at 36.7 ㎑ with 45 V$\sub$rms/ and 0.11 A. The displacement amplification ratio was about 5.2. But, the stress of step l horn was concentrated on intersection, where two diameters meet. To lessen the stress, step3 shaped hem is recommended.

A Study on the Fundamental Characteristics Analysis of Giant Magnetostrictive Materials (초자기변형소자(Terfenol-D)의 기초특성해석에 관한 연구)

  • Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.398-403
    • /
    • 2011
  • Terfenol-D is one of several magnetostrictive materials with property of converting energy into mechanical motion, and vice versa. Magnetostriction is the property that causes certain ferromagnetic materials to change shape in a magnetic field. Terfenol-D is said to produce giant magnetostriction, strain greater than any other commercially available smart material. In this paper, fundamental characteristics analysis of giant magnetostrictive materials(Terfenol-D) has been investigated. The magnetic field analysis is carried out by using finite element method simulation ANSYS. The results show 223N in force and 9.5T in maximum magnetic flux density and 7.56 $10^6A/m$ in maximum magnetic field intensity 1A current. Through the analysis, basic data of Terfenol-D for the application of mechanical system are obtained.