• Title/Summary/Keyword: Finite Element (FE)

Search Result 1,855, Processing Time 0.031 seconds

Finite Element Analysis of Sound Transfer Characteristics for Middle Ear (유한요소 모델을 이용한 중이의 소리전달 특성 해석)

  • Gal, Young-Min;Baek, Moo-Jin;Lee, Doo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1563-1571
    • /
    • 2011
  • In this study, we developed a finite element model of the human middle ear has been developed to calculate itsfor sound transfer characteristics calculation. We usedThe geometric data forof ossicles, obtained byfrom micro-CT scanning, was used in order to develop the middle- ear FE model. A right- side temporal bone of a Korean cadaver was used for the micro-CT scanning. The developed FE model includes three ossicles, the tympanic membrane, ligaments, and muscles. We calculated theA sound transfer function from the tympanic membrane to the stapes footplate was calculated. The sound transfer function calculated vias of the FE model shows good agreement with measured responses over the 10- kHz frequency band. To measureidentify the sensitivityies of the middle- ear function due to material property variation, we studied several parameters studies have been fulfilled using the middle ear FE model. TAs a result the stiffness property of the incudostapedial joint had the greatest influence onwas the most influential to the middle- ear sound transfer function among the parameters.

Methodologies for numerical modelling of prestressed concrete box-girder for long term deflection

  • Lalanthi, M.C.;Kamatchi, P.;Balaji Rao, K.;Saibabu, S.
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.269-278
    • /
    • 2018
  • In this paper, two methods M1 and M2 to determine long-term deflection through finite element analyses including the effect of creep and relaxation are proposed and demonstrated for a PSC box-girder. In both the methods, the effect of creep is accounted by different models from international standards viz., ACI-209R-92, CEB MC 90-99, B3 and GL2000. In M1, prestress losses due to creep and relaxation and age adjusted effective modulus are estimated through different models and have been used in finite element (FE) analyses for individual time steps. In M2, effects of creep and relaxation are implemented through the features of FE program and the time dependent analyses are carried out in single step. Variations in time-dependent strains, prestress losses, stresses and deflections of the PSC box-girder bridge through M1 and M2 are studied. For the PSC girder camber obtained from both M1 and M2 are lesser than simple bending theory based calculations, this shows that the camber is overestimated by simple bending theory which may lead to non-conservative design. It is also observed that stresses obtained from FEM for bottom fibre are lesser than the stresses obtained from bending theory at transfer for the PSC girder which may lead to non-conservative estimates.

Detailed Finite Element Analysis of Full-scale Four-story Steel Frame Structure subjected to Consecutive Ground Motions

  • Tagawa, Hiroyuki;Miyamura, Tomoshi;Yamashita, Takuzo;Kohiyama, Masayuki;Ohsaki, Makoto
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.65-73
    • /
    • 2015
  • Detailed finite element (FE) analyses of a full-scale four-story steel frame structure, subjected to consecutive 60% and 100% excitations from the JR Takatori records during the 1995 Hyogoken-Nanbu earthquake, are conducted using E-Simulator. The four-story frame was tested at the largest shake-table facility in the world, E-Defense, in 2007. E-Simulator is a parallel FE analysis software package developed to accurately simulate structural behavior up to collapse by using a fine mesh of solid elements. To reduce computational time in consecutive dynamic time history analyses, static analysis with gravity force is introduced to terminate the vibration of the structure during the analysis of 60% excitation. An overall sway mechanism when subjected to 60% excitation and a story mechanism resulting from local buckling of the first-story columns when subjected to 100% excitation are simulated by using E-Simulator. The story drift response to the consecutive 60% and 100% excitations is slightly smaller than that for the single 100% excitation.

Tree-dimensional FE Analysis of Acoustic Emission of Fiber Breakage using Explicit Time Integration Method (외연적 시간적분법을 이용한 복합재료 섬유 파단 시 음향방출의 3차원 유한요소 해석)

  • Paik, Seung-Hoon;Park, Si-Hyong;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.172-175
    • /
    • 2005
  • The numerical simulation is performed for the acoustic emission and the wave propagation due to fiber breakage in single fiber composite plates by the finite element transient analysis. The acoustic emission and the following wave motions from a fiber breakage under a static loading is simulated to investigate the applicability of the explicit finite element method and the equivalent volume force model as a simulation tool of wave propagation and a modeling technique of an acoustic emission. For such a simple case of the damage event under static loading, various parameters affecting the wave motion are investigated for reliable simulations of the impact damage event. The high velocity and the small wave length of the acoustic emission require a refined analysis with dense distribution of the finite element and a small time step. In order to fulfill the requirement for capturing the exact wave propagation and to cover the 3-D simulation, we utilize the parallel FE transient analysis code and the parallel computing technology.

  • PDF

FEA Simulation for Practical Behaviors of Electrostatic Micro Actuator (마이크로 액추에이터의 실제 거동에 대한 FEA 시뮬레이션)

  • Lee Yang Chang;Lee Joon Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.115-121
    • /
    • 2005
  • Micromachines are extremely novel artifacts with a variety of special characteristics. Utilizing their tiny dimensions ranging roughly from 10 to $10^3$ micro-meters, the micromachines can perform tasks in a revolutionary manner that would be impossible for conventional artifacts. Micromachines are in general related to various coupled physical phenomena. They are required to be evaluated and designed considering the coupled phenomena. This paper describes finite element analysis (FEA) simulation of practical behaviors for the micro actuator. Especially, electric field modeling in micro actuators has been generally restricted to in-plane two-dimensional finite element analysis because of the complexity of the micro actuator geometry. However, in this paper, the actual three-dimensional geometry of the micro actuator is considered. The starting torque obtained from the in-plane two-dimensional analytical solutions were compared with that of the actual three-dimensional FE analysis results. The starting torque is proportional to $V^2$, and that the two-dimensional analytical solutions are larger than the three- dimensional FE ones. It is found that the evaluation of micro actuator has to be considered electrical leakage phenomenon.

Prediction of Elastic Bending Modulus of Multi-layered Graphene Sheets Using Nanoscale Molecular Mechanics (나노스케일 분자역학을 이용한 다층 그래핀의 굽힘 탄성거동 예측)

  • Kim, Dae-Young;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.421-427
    • /
    • 2015
  • In this paper, a description is given of finite element method (FEM) simulations of the elastic bending modulus of multi-layered graphene sheets that were carried out to investigate the mechanical behavior of graphene sheets with different gap thicknesses through molecular mechanics theory. The interaction forces between layers with various gap thicknesses were considered based on the van der Waals interaction. A finite element (FE) model of a multi-layered rectangular graphene sheet was proposed with beam elements representing bonded interactions and spring elements representing non-bonded interactions between layers and between diagonally adjacent atoms. As a result, the average elastic bending modulus was predicted to be 1.13 TPa in the armchair direction and 1.18 TPa in the zigzag direction. The simulation results from this work are comparable to both experimental tests and numerical studies from the literature.

Finite Element Modeling and Experimental Verification of the Automotive Electronics (자동차 전장부품의 유한요소 모델링 및 실험적 검증)

  • Oh, Se-Jong;Lee, Hae-Jin;Kang, Won-Ho;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.204-207
    • /
    • 2005
  • A reliable and practical finite element modeling technique to predict the lifetime of automotive electronics is important for engineers in reliability. In reliability evaluation on the automotive electronics, most studies rarely used FE model verification process. The material properties and boundary conditions are very important factors in this process to assure the reliability of the automotive electronics. This study aims to develop a better and more accurate FE model in order to predict fatigue life of the automotive electronics using Virtual Qualification lifetime assessment techniques. After conducting the modal analysis by the experiments to grasp a system characteristic, this paper presents material properties and boundary conditions that is obtained by the comparisons of FEA simulation results using DOE technique and the experiment results.

  • PDF

FEA Simulation for Performance Estimation of Micro Actuator (마이크로 액추에이터의 성능평가를 위한 FEA 시뮬레이션)

  • 이양창;이준성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1045-1048
    • /
    • 2002
  • Micromachines are extremely novel artifacts with a variety of special characteristics. Utilizing their tiny dimensions ranging roughly from 10 to $1O^3$ micro-meters, the micromachines can perform tasks in a revolutionary manner that would be impossible for conventional artifacts. Micromachines are in general related to various coupled physical phenomena. They are required to be evaluated and designed considering the coupled phenomena. This paper describes finite element analysis (FEA) simulation of practical behaviors for the micro actuator. Especially, electric field modeling in micro actuators has been generally restricted to in-plane two-dimensional finite element analysis because of the complexity of the micro actuator geometry. However, in this thesis, the actual three-dimensional geometry of the micro actuator is considered. The starting torque obtained from the in-plane two-dimensional analytical solutions were compared with that of the actual three-dimensional FE analysis results. The starting torque is proportional to $V^2$, and that the two-dimensional analytical solutions are larger than the three-dimensional FE ones. It is found that the evaluation of micro actuator has to be considered electrical leakage phenomenon.

  • PDF

Improvement of Assembly Characteristics of a Lens Module in a Mobile Phone Camera using Finite Element Analysis (유한요소해석을 사용한 휴대폰 카메라용 렌즈모듈의 결합특성 개선)

  • Moon, Yang-Ho;Moon, Jae-Ho;Lyu, Min-Young;Park, Keun
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.366-372
    • /
    • 2009
  • The present study covers the optimal design for a lens module in a mobile phone camera by using the design of experiments (DOE) and finite element (FE) analysis. FE analyses are performed to investigate the effect of design parameters on the amount of torque required to assemble a barrel and a housing part. The DOE approach is then performed to optimize the design parameters in order to maintain an appropriate torque with less variations.