• 제목/요약/키워드: Finish Machining

검색결과 162건 처리시간 0.022초

와이어 종류에 따른 방전가공 부품의 기계적 특성 (Mechanical Characteristics of Electrical Discharge Machined Product due to the Different Wire Electrode)

  • 김종업;정순성;왕덕현;김원일;이윤경
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.875-878
    • /
    • 1997
  • Electrical discharge machining is the method of using thermal energy by electrical discharge. Generally, if the material of workpiece has conductivity even though it is very hard material and complicated shape which are difficult to cut such as quenching steel, cemented carbide, diamond and conductive ceramics, the EDM is favorable one of possible machining processes. But, the process is necessarily required of finish cut and heat treatment because of slow cutting speed, no mirror surface, brittleness and crack due to the residual stress for manufactured goods.

  • PDF

Al 6061의 드릴가공에서 공구코팅과 공정변수가 표면정도에 미치는 영향 (Effect of Coating and Machining Parameters on Surface Finish in Dry Drilling of Aluminium 6061)

  • 최만성
    • 반도체디스플레이기술학회지
    • /
    • 제14권2호
    • /
    • pp.47-52
    • /
    • 2015
  • In this paper, the performance of uncoated- and Titanium nitride aluminium TiAlN-PVD coated- carbide twist drills were investigated when drilling aluminium alloy, Al 6061. This research focuses on the optimization of drilling parameters using the Taguchi technique to obtain minimum surface roughness and thrust force. A number of drilling experiments were conducted using the L9 orthogonal array on a CNC vertical machining center. The experiments were performed on Al 6061 material l blocks using uncoated and coated HSS twist drills under dry cutting conditions. Analysis of variance(ANOVA) was employed to determine the most significant control factors. The main objective is to find the important factors and combination of factors influence the machining process to achieve low surface roughness and low cutting thrust force. From the analysis of the Taguchi method indicates that among the all-significant parameters, feed rate are more significant influence on surface roughness and cutting thrust than spindle speed.

환경친화적 기계가공을 위한 기계적$\cdot$열적측면에서의 절삭유제 사용효과에 관한 연구 (A Study on the Cutting Fluid Effectiveness in Mechanical and Thermal Terms Simultaneously for Environmentally Conscious Machining)

  • 모용구;황준;정의식
    • 한국정밀공학회지
    • /
    • 제17권7호
    • /
    • pp.90-97
    • /
    • 2000
  • This paper presents a methodology to analyze the cutting fluid effectiveness in mechanical and thermal terms simultaneously using finite element method and experimental work. Cutting fluid plays many roles in metal cutting process. Mechanically-thermally coupled effectiveness of cutting fluids affect to friction coefficient at tool-workpiece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, it can be explained that the critical behavior of cutting fluids will be able to apply optimal environmentally conscious machining process.

  • PDF

선삭공정의 각도변화가 표면거칠기에 미치는 영향에 관한 기초 연구 (A Basic Study on the Surface Roughness in Turning Process Considering Taper Angle Variation)

  • 김동현;최준영;이춘만
    • 한국기계가공학회지
    • /
    • 제10권6호
    • /
    • pp.16-21
    • /
    • 2011
  • In machining operation, the quality of surface finish is an important factor for many turned products. In this paper, surface quality in turning machining considering angle variation has been investigated. To reach this goal, surface quality turning experiments are carried out according to cutting conditions with angle variation. The variable cutting conditions are cutting speed, feed rate and taper angle of workpiece. The surface roughness was measured and the effects of cutting conditions were analyzed by the method of analysis of variance (ANOVA). From the experimental results and ANOVA, it is found that a better surface roughness can be obtained as decreasing feed rate, increasing cutting speed. Taper angle variation has been more influenced by feed rate and cutting speed.

광학유리(BK7) 초정밀절삭의 실험적 연구 (An Experimental Study of Ultra-Precision Turning of Optical Glass(BK7))

  • 김민재;이준기;윤영곤;이현성;황연;김혜정;김정호
    • 한국생산제조학회지
    • /
    • 제20권4호
    • /
    • pp.382-385
    • /
    • 2011
  • There is an immense need to obtain nanometric surface finish on optical glass owing to the advantage of improved performance of the components. But owing to brittleness and hardness, optical glass is one of the materials that is difficult to ultra-precision turning. According to the hypothesis of ductile mode machining, regardless of their hardness and brittleness, will undergo a transition from brittle to ductile machining region below a critical undeformed chip thickness. Below this threshold, it is suggested that the energy required for plastic formation. Thus, plastic deformation is the predominant mechanism of material removal in machining these materials in this mode. An experimental study is conducted diamond cutting for machining BK7 glass. The investigation presents the feasibility of achieving nanometric surface and the understanding the mechanism of cutting glass, proving the cutting edge radius effect.

3축 CNC 밀링을 이용한 치아 모형 제작 방법 (Making Teeth Models using 3-aixs CNC Milling)

  • 최원창;서엄지;백지혜;정연찬
    • 소성∙가공
    • /
    • 제23권1호
    • /
    • pp.16-22
    • /
    • 2014
  • The current study presents a simple setup method for making teeth models using a three-axis CNC milling machine. Physical teeth models can be made by several methods: casting, machining, and three-dimensional printing. Since the shape of a teeth model requires five-axis machining, the machining of a teeth model using a three-axis CNC milling machine requires careful setup operations. In this paper a simple datum shape is designed within the work piece of the teeth model. The datum shape is an n-sided prism with regular n-polygon ends and rectangular sides. In the present study a 12-sided prism is used, which easily makes 30 degree rotations for finish machining. The proposed setup approach does not require any special tools for making the teeth model using a three-axis CNC milling machine. A test was run and the results show that the proposed approach is useful for experimental makings with the limited facilities available.

압전구동기를 이용한 정밀 가공용 초음파 진동장치 해석 및 실험 (Analysis and Experiment of Ultrasonic Vibration Mechanism using PZT Actuator for Precision Laser Machining)

  • 김우진;전용호;조성학
    • 한국정밀공학회지
    • /
    • 제28권12호
    • /
    • pp.1347-1352
    • /
    • 2011
  • Recently, as the aged population grows around the world, many medical instruments, devices, and their fabrication processes are developing. Among the devices, a drug delivery stent is a good example for precision machining. Conventional drug delivery stent has problem of the remaining polymer because the drug is coated on the surface with it. If the drug is impregnated into the micro hole array on the stent surface, the polymer can be perfectly eliminated. Micro sized holes are generally fabricated by laser machining however, the fabricated holes do not have an enough aspect ratio to contain the drug or a good surface finish to deliver the stend to blood vessel tissue. To overcome these problems, we propose a vibration-assisted machining mechanism with PZT (Piezoelectric Transducers) for abrication of micro sized holes better. The results indicated that the burr size can be significantly decreased with vibration assisted in nanosecond pulse laser drilling test.

마이크로 펄스 전해 복합가공에 관한 연구 (Study on the new development of combined electrochemical processes using pulse current)

  • 박정우;이은상;문영훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.918-921
    • /
    • 2002
  • Some investigators who have tried to achieve the highly smooth surface finish using electrochemical processes have reported that high current density produced lustrous surfaces while the opposite conditions produced a passive layer and had a tendency to produce a black surface. However, processing at a low current density may produce a non-lustrous surface but the improvement of dimensional accuracy of the surface is significant. The surface with pulse process was a bit more lustrous than with continuous current but the black passive layer still could be found at grooved surface. There are two ways to achieve highly smooth surface finish. One is brushing it with a brush the other is electrochemical machining (ECM) with high current. The former method is the most common polishing practice, but not only may the surface obtained differ from operator to operator, but precision smooth surface on micro grooves are difficult to obtain. The latter one recently has been used to produce a highly smooth surface after EDM process. However, the material removal rate in ECM with high current is relatively high. Hence the original shape of the micro grooves, which was formed by electrochemical micro-machining (EMM) process, may be destroyed. In this study, an electrochemical polishing process using pulse current is adopted as a possible alternative process when micro grooves formed by EMM process should be polished. Mirror-like micro grooves with lustrous and smooth surface can be produced electrochemically with pulse current because the voltage and current used can be lower than the case of continuous current. This study will discuss the accurate control of physical and electrical conditions so as to achieve mirror-like micro grooves with lustrous and smooth surface without destroying the original shape of micro grooves.

  • PDF

ENGINEERING CERAMICS의 평면연삭가공 특성에 관한 연구

  • 김호철;김원일;강재훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.136-144
    • /
    • 1992
  • Recently, Silicon Nitrde ceramic is regarded as the representative engineering ceramic with the excellent mechanical properties and many functions for mechanical components and parts among various kinds of ceramics in the mechanical industry. But, during the manufacturing of engineering ceramics, there is many volumetric shrinkage coupled with a distortion of the parts which is produced. Due to the requirement for high accuracy of size, form, and surface finish of the components, machining is needed surely. Nowdays, grinding with a resin bond type diamond wheels has been generally applied to machining of the engineering ceramics in the whole world because that it can be conveniently proceeded for workers to dress of tool and made with high reliability in producing factories among many bond type super-abrasive wheels yet. It is important task for attaining prescribed mechanical components with high reliability to observe the grinding mechanism of ceramics as like generation of cracks and chipping of material during process. Because they considerably effects on the strength characteristic of machined mechanical components. In this study, various surface grinding experiments using resin bond type diamond wheels are carried out for Silicon Nitride ceramic. Grinding mechanism of ceramics is observed experimentally and the relationship with various conditions is also attained. Form this experimental study, some useful machining data and information to determine proper machining condition for grinding of Silicon Nitride ceramic is obtained.

고속가공에 의한 고경도재 QRO90 코어부의 가공성 향상 (Improvement of Machinability for QRO90 High Hardened Core Part by High Speed Machining)

  • 강명창;김정석;이득우;임유업
    • 한국정밀공학회지
    • /
    • 제19권3호
    • /
    • pp.101-106
    • /
    • 2002
  • This paper presents an experimental investigation of high speed machining of dies and molds. Several critical issues involved with the high speed machining of QRO90 tool steel of hardness up to HRc62, have been studied and explained from a detail analysis of experimental observations. The experiments were performed using ball end mills. The effect of different process parameters on tool life and surface finish produced was also investigated. The cutting parameters involved were; cutting speeds in the range of 100 to 40 / m/min, axial depth of cut from 0.1 to 0.5mm, pick feed of 0.1 to 0.5mm. Run out and acceleration signals were observed during the experiment to investigate cutting slates. Compressed air and flood coolant were used and the effect of coolant on tool life was also determined.