• Title/Summary/Keyword: Fingerprint images

Search Result 134, Processing Time 0.023 seconds

An Efficient Selective Encryption of Fingerprint Images for Embedded Processors

  • Moon, Dae-Sung;Chung, Yong-Wha;Pan, Sung-Bum;Moon, Ki-Young;Chung, Kyo-Il
    • ETRI Journal
    • /
    • v.28 no.4
    • /
    • pp.444-452
    • /
    • 2006
  • Biometric-based authentication can provide a strong security guarantee of the identity of users. However, the security of biometric data is particularly important as any compromise of the biometric data will be permanent. In this paper, we propose a secure and efficient protocol to transmit fingerprint images from a fingerprint sensor to a client by exploiting the characteristics of the fingerprint images. Because the fingerprint sensor is computationally limited, a standard encryption algorithm may not be applied to the full fingerprint images in real-time to guarantee the integrity and confidentiality of the fingerprint images transmitted. To reduce the computational workload on the resource-constrained sensor, we apply the encryption algorithm to a nonce for integrity and to a specific bitplane of each pixel of the fingerprint image for confidentiality. Experimental results show that the integrity and confidentiality of the fingerprint images can be guaranteed without any leakage of the fingerprint ridge information and can be completed in real-time on embedded processors.

  • PDF

A Study on Strong Minutiae Extraction for Secure and Rapid Fingerprint Authentication

  • Han, Jin-Ho
    • International journal of advanced smart convergence
    • /
    • v.6 no.2
    • /
    • pp.65-71
    • /
    • 2017
  • Fingerprints are increasingly used for user authentication in small devices such as mobile phones. Therefore, it is important for Fingerprint authentication systems in personal devices to protect the user's fingerprint information while performing efficiently with a lightweight matching algorithm. In this paper, we propose a new method to extract strong minutiae with unique numbers from fingerprint images. Strong minutiae are at all times obtained from fingerprint images, and can be useful for secure and rapid fingerprint authentication. The binary information of strong minutiae of a fingerprint can be transformed securely and can create cancelable fingerprint templates. Also the bit-strings of strong minutiae decrease computing time necessary for the matching procedure between two fingerprints due to the simplicity of bitwise operations. First, we enroll several fingerprints images of a finger. From these images we select a reference fingerprint and put a number on each minutia. Following this procedure, we search for mated-minutiae between the reference fingerprint and other fingerprints one by one. Finally we derive unique numbers of strong minutiae of the finger. In the experiment with the FVC2004 fingerprint database, we show that using the proposed method, strong minutiae can be extracted successfully.

A Study on the fingerprint images classification based on the changes of direction fields of fingerprint images (방향척도을 이용한 지문영상 분류에 관한 연구)

  • Kim, S.G.
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.108-113
    • /
    • 2007
  • The classification of fingerprint images is to classify fingerprint images into varies fingerprint types, it is very important in automatic fingerprint recognition. In this paper, a new singular points detection technique was presented. A direction uniform measure is defined to describe the changes of direction fields in a certain neighborhood of fingerprint images. Singular points can be detected by adopting the measure. It should be pointed out that singular points in accurate positions would be obtained in this ways. And an improved Poincare exponential algorithm is presented to identify core points and triangle points. In this paper. making use of 102 experimental fingerprint images datas and attained 7.8% classification errors. This was better than experimental result of abstract [9]. It is possible to use on-line fingerprint images classification.

Development of a Fingerprint Recognition System for Various Fingerprint Image (다양한 지문 영상에 강인한 지문인식 시스템 개발)

  • 이응봉;전성욱;유춘우;김학일
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.10-19
    • /
    • 2003
  • As the technical demand for biometrics is increasing, users expect that fingerprint recognition systems are operable with various fingerprint readers. However, current commercial off-the-shelf fingerprint recognition systems are no interoperable due to the lack of standardization in application program interfaces for fingerprint readers. A cross-matching fingerprint recognition system is a person authentication system based on fingerprints and utilizing different types of fingerprint readers. It should be able to overcome variations in fingerprint images acquired by different readers, such as the size, resolution, contrast of images. The purpose of this research is to develop across-matching fingerprint recognition system for fingerprint research of different sensing mechanism. The fingerprint readers tested in this study are optical, semiconductor and thermal sensor modules, and the prpoposed cross-matching system utilizes both a minutiae-based similarity and a ridge count-based similarity in matching fingerprint images acquired by different sensors.

A Directional Feature Extraction Method of Each Region for the Classification of Fingerprint Images with Various Shapes (다양한 형태의 지문 이미지 분류를 위한 영역별 방향특징 추출 방법)

  • Jung, Hye-Wuk;Lee, Jee-Hyong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.887-893
    • /
    • 2012
  • In this paper, we propose a new approach to extract directional features based on directional patterns of each region in fingerprint images. The proposed approach computes the center of gravity to extract features from fingerprint images of various shapes. According to it, we divide a fingerprint image into four regions and compute the directional values of each region. To extract directional features of each region from a fingerprint image, we spilt direction values of ridges in a region into 18 classes and compute frequency distribution of each region. Through the result of our experiment using FVC2002 DB database acquired by electronic devices, we show that directional features are effectively extracted from various fingerprint images of exceptional inputs which lost all or part of singularities. To verify the performance of the proposed approach, we explained the process to model Arch, Left, Right and Whorl class using the extracted directional features of four regions and analyzed the classification result.

K-Means Clustering with Deep Learning for Fingerprint Class Type Prediction

  • Mukoya, Esther;Rimiru, Richard;Kimwele, Michael;Mashava, Destine
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.29-36
    • /
    • 2022
  • In deep learning classification tasks, most models frequently assume that all labels are available for the training datasets. As such strategies to learn new concepts from unlabeled datasets are scarce. In fingerprint classification tasks, most of the fingerprint datasets are labelled using the subject/individual and fingerprint datasets labelled with finger type classes are scarce. In this paper, authors have developed approaches of classifying fingerprint images using the majorly known fingerprint classes. Our study provides a flexible method to learn new classes of fingerprints. Our classifier model combines both the clustering technique and use of deep learning to cluster and hence label the fingerprint images into appropriate classes. The K means clustering strategy explores the label uncertainty and high-density regions from unlabeled data to be clustered. Using similarity index, five clusters are created. Deep learning is then used to train a model using a publicly known fingerprint dataset with known finger class types. A prediction technique is then employed to predict the classes of the clusters from the trained model. Our proposed model is better and has less computational costs in learning new classes and hence significantly saving on labelling costs of fingerprint images.

Image Analysis Fuzzy System

  • Abdelwahed Motwakel;Adnan Shaout;Anwer Mustafa Hilal;Manar Ahmed Hamza
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.163-177
    • /
    • 2024
  • The fingerprint image quality relies on the clearness of separated ridges by valleys and the uniformity of the separation. The condition of skin still dominate the overall quality of the fingerprint. However, the identification performance of such system is very sensitive to the quality of the captured fingerprint image. Fingerprint image quality analysis and enhancement are useful in improving the performance of fingerprint identification systems. A fuzzy technique is introduced in this paper for both fingerprint image quality analysis and enhancement. First, the quality analysis is performed by extracting four features from a fingerprint image which are the local clarity score (LCS), global clarity score (GCS), ridge_valley thickness ratio (RVTR), and the Global Contrast Factor (GCF). A fuzzy logic technique that uses Mamdani fuzzy rule model is designed. The fuzzy inference system is able to analyse and determinate the fingerprint image type (oily, dry or neutral) based on the extracted feature values and the fuzzy inference rules. The percentages of the test fuzzy inference system for each type is as follow: For dry fingerprint the percentage is 81.33, for oily the percentage is 54.75, and for neutral the percentage is 68.48. Secondly, a fuzzy morphology is applied to enhance the dry and oily fingerprint images. The fuzzy morphology method improves the quality of a fingerprint image, thus improving the performance of the fingerprint identification system significantly. All experimental work which was done for both quality analysis and image enhancement was done using the DB_ITS_2009 database which is a private database collected by the department of electrical engineering, institute of technology Sepuluh Nopember Surabaya, Indonesia. The performance evaluation was done using the Feature Similarity index (FSIM). Where the FSIM is an image quality assessment (IQA) metric, which uses computational models to measure the image quality consistently with subjective evaluations. The new proposed system outperformed the classical system by 900% for the dry fingerprint images and 14% for the oily fingerprint images.

A Novel Preprocessing Algorithm for Fingerprint

  • Nam, Jin-Moon
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.442-448
    • /
    • 2009
  • This paper proposes a fingerprint image processing algorithm to accurately extract minutiae in the process of fingerprint recognition. We improved the matching accuracy of low quality fingerprint images by using effective ridge vector and ridge probability. The proposed algorithm improves the clarity of ridge structures and reduces undesired noise. We collected thumb print images from 10 individuals 5 separate times each, in total using 50 thumbprints. We registered one of the five thumbprint images from each individual to match the registered one with the other four thumbprint images, and alternated the registered thumbprint image. We matched thumbprints 20 times for each individual. In total, we conducted 200 matches for the thumbprints from the 10 individuals. We improved the verification accuracy and reliability compared to conventional methods.

Preprocessing Algorithm for Enhancement of Fingerprint Identification (지문이미지 인증률 향상을 위한 전처리 알고리즘)

  • Jung, Seung-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.61-69
    • /
    • 2007
  • This paper proposes new preprocessing algorithm to extract minutiae in the process of fingerprint recognition. Fingerprint images quality enhancement is a topic phase to ensure good performance in a topic phase to ensure good performance in a Automatic Fingerprint Identification System(AFIS) based on minutiae matching. This paper proposes an algorithm to improve fingerprint image preprocessing to extract minutiae accurately based on directional filter. We improved the suitability of low quality fingerprint images to better suit fingerprint recognition by using valid ridge vector and ridge probability of fingerprint images. With the proposed fingerprint improvement algorithm, noise is removed and presumed ridges are more clearly ascertained. The algorithm is based on five step: computation of effective ridge vector, computation of ridge probability, noise reduction, ridge emphasis, and orientation compensation and frequency estimation. The performance of the proposed approach has been evaluated on two set of images: the first one is self collected using a capacitive semiconductor sensor and second one is DB3 database from Fingerprint Verification Competition (FVC).

Fingerprint Image Sequence Mosaicking in Touchless Fingerprint Sensor (비접촉식 지문센서에서의 지문 영상 시퀀스 융합)

  • Choi, Kyoung-Taek;Choi, Hee-Seung;Kim, Jai-Hie
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.377-378
    • /
    • 2007
  • This paper proposes an system to generate rolled-equivalent fingerprints by mosaicking sequential images captured by an toothless device. To capture rolled-equivalent fingerprints, previous works use multiple cameras. However, the method in this paper captures sequential fingerprint images with a single camera and mosaic the images by estimating the transform between images through optical flow.

  • PDF