• Title/Summary/Keyword: Finger-Knuckle-Print

Search Result 3, Processing Time 0.015 seconds

Finger-Knuckle Print Recognition Using Gradient Orientation Feature (그레이디언트 방향 특징을 이용한 손가락 관절문 인식)

  • Kim, Min-Ki
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.517-523
    • /
    • 2012
  • Biometrics is a study of identifying individual by using the features of human body. It has been studied for an alternative or complementary method for the classical method based on password, ID card, etc. In comparison with the fingerprint, iris, ear, palmprint, finger-knuckle print has been recently studied. This paper proposes an effective method for recognizing finger-knuckle print based on the feature of Gradient orientation. The main features of finger-knuckle print are the size and direction of winkles. In order to extract these features stably, we make a feature vector consisted of Gradient orientations after the preprocessing of enhancing non-uniform brightness and low contrast. Total 790 images acquired from 158 persons have been used at the experiment for evaluating the performance of the proposed method. The experimental results show the recognition rate of 99.69% and the relatively high decidability index of 1.882. These results demonstrate that the proposed method is effective in recognizing finger-knuckle print.

Finger-Knuckle-Print Verification Using Vector Similarity Matching of Keypoints (특징점간의 벡터 유사도 정합을 이용한 손가락 관절문 인증)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.9
    • /
    • pp.1057-1066
    • /
    • 2013
  • Personal verification using finger-knuckle-print(FKP) uses lines and creases at the finger-knuckle area, so the orientation information of texture is an important feature. In this paper, we propose an effective FKP verification method which extracts keypoints using SIFT algorithm and matches the keypoints by vector similarity. The vector is defined as a direction vector which connects a keypoint extracted from a query image and a corresponding keypoint extracted from a reference image. Since the direction vector is created by a pair of local keypoints, the direction vector itself represents only a local feature. However, it has an advantage of expanding a local feature to a global feature by comparing the vector similarity among vectors in two images. The experimental results show that the proposed method is superior to the previous methods based on orientation codes.

A Multimodal Fusion Method Based on a Rotation Invariant Hierarchical Model for Finger-based Recognition

  • Zhong, Zhen;Gao, Wanlin;Wang, Minjuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.131-146
    • /
    • 2021
  • Multimodal biometric-based recognition has been an active topic because of its higher convenience in recent years. Due to high user convenience of finger, finger-based personal identification has been widely used in practice. Hence, taking Finger-Print (FP), Finger-Vein (FV) and Finger-Knuckle-Print (FKP) as the ingredients of characteristic, their feature representation were helpful for improving the universality and reliability in identification. To usefully fuse the multimodal finger-features together, a new robust representation algorithm was proposed based on hierarchical model. Firstly, to obtain more robust features, the feature maps were obtained by Gabor magnitude feature coding and then described by Local Binary Pattern (LBP). Secondly, the LGBP-based feature maps were processed hierarchically in bottom-up mode by variable rectangle and circle granules, respectively. Finally, the intension of each granule was represented by Local-invariant Gray Features (LGFs) and called Hierarchical Local-Gabor-based Gray Invariant Features (HLGGIFs). Experiment results revealed that the proposed algorithm is capable of improving rotation variation of finger-pose, and achieving lower Equal Error Rate (EER) in our homemade database.