• 제목/요약/키워드: Finger Grasping Force

검색결과 41건 처리시간 0.026초

단축 힘센서를 이용한 두 손가락 잡기 힘측정장치 개발 및 특성평가 (Development of Two-Finger Force Measuring System to Measure Two-Finger Gripping Force and Its Characteristic Evaluation)

  • 김현민;신희석;윤정원;김갑순
    • 센서학회지
    • /
    • 제20권3호
    • /
    • pp.172-177
    • /
    • 2011
  • Finger patients can't use their hands because of the paralysis their fingers. Their fingers are recovered by rehabilitating training, and the rehabilitating extent can be judged by measuring the pressing force to be contacted with two fingers(thumb and first finger, thumb and middle finger, thumb and ring finger, thumb and little finger). At present, most hospitals have used a thin plastic-plate for measuring the two-finger grasping force, and we can only judge that they can grasp the plate with their two-finger through it, because the plate can't measure the two-finger grasping force. But, recently, the force measuring system for measuring two-finger grasping force was developed using three-axis force sensor, but it is very expensive, because it has a three-axis force sensor. In this paper, two-finger force measuring system with a one-axis force sensor which can measure two-finger grasping force was developed. The one-axis force sensor was designed and fabricated, and the force measuring device was designed and manufactured using DSP(Digital Signal Processing). Also, the grasping force test of men was performed using the developed two-finger force measuring system, it was confirmed that the grasping forces of men were different according to grasping methods, and the system can be used for measuring two-finger grasping force.

3축 힘센서를 이용한 두 손가락 힘측정장치 개발 (Development of Force Measuring System using Three-axis Force Sensor for Measuring Two-finger Force)

  • 김현민;윤정원;신희석;김갑순
    • 제어로봇시스템학회논문지
    • /
    • 제16권9호
    • /
    • pp.876-882
    • /
    • 2010
  • Stroke patients can't use their hands because of the paralysis their fingers. Their fingers are recovered by rehabilitating training, and the rehabilitating extent can be judged by measuring the pressing force to be contacted with two fingers (thumb and first finger, thumb and middle finger, thumb and ring finger, thumb and little finger). But, at present, the grasping finger force of two-finger can't be accurately measured, because there is not a proper finger-force measuring system. Therefore, doctors can't correctly judge the rehabilitating extent. So, the finger-force measuring system which can measure the grasping force of two-finger must be developed. In this paper, the finger-force measuring system with a three-axis force sensor which can measure the pressing force was developed. The three-axis force sensor was designed and fabricated, and the force measuring device was designed and manufactured using DSP (Digital Signal Processing). Also, the grasping force test of men was performed using the developed finger-force measuring system, it was confirmed that the grasping forces of men were different according to grasping methods.

2축 힘/모멘트센서를 이용한 원통형 손가락 힘측정장치 개발 및 특성평가 (Development of Cylindrical-type Finger Force Measuring System Using Two-axis Force/Moment Sensor and its Characteristic Evaluation)

  • 김갑순
    • 제어로봇시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.484-489
    • /
    • 2011
  • Some patients can't use their hands because of inherent and acquired paralysis of their fingers. Their fingers can recover with rehabilitative training, and the extent of rehabilitation can be judged by grasping a cylindrical-object with their fingers. At present, the cylindrical-object used in hospitals is only a cylinder which cannot measure grasping force of the fingers. Therefore, doctors must judge the extent of rehabilitation by watching patients' fingers as they grasp the cylinder. A cylindrical-type finger force measuring system which can measure the grasping force of patients' fingers should be developed. This paper looks at the development of a cylindrical-type finger force measuring system with two-axis force/moment sensor which can measure grasping force. The two-axis force/moment sensor was designed and fabricated, and the high-speed force measuring device was designed and manufactured by using DSP (digital signal processing). Also, cylindrical-type finger force measuring system was developed using the developed two-axis force/moment sensor and the high-speed force measuring device, and the grasping force tests of men were performed using the developed system. The tests confirm that the average finger forces of right and left hands for men were about 186N and 172N respectively.

미지물체를 잡기 위한 로봇 손가락의 3축 힘감지센서 설계 및 제작 (Design and fabrication of robot′s finger 3-axis force sensor for grasping an unknown object)

  • 김갑순
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.229-232
    • /
    • 2002
  • This paper describes the development of robot's finger 3-axis force sensor that detects the Fx, Fy, and Fz simultaneously fur stably grasping an unknown object. In order to safely grasp an unknown object using the robot's fingers, they should detect the force of gripping direction and the force of gravity direction, and perform the force control using the detected farces. The 3-axis force sensor that detects the Fx, Fy, and Fz simultaneously should be used for accurately detecting the weight of an unknown object of gravity direction. Thus, in this paper, robot's finger for stably grasping an unknown object is developed. And, the 3-axis farce sensor that detects the Fx, Fy, and Fz simultaneously fur constructing a robot's finger is newly modeled using several parallel-plate beams, and is fabricated. Also, it is calibrated, and evaluated.

  • PDF

로봇의 지능형 손을 위한 3축 손가락 힘센서 개발 (Development of 3-axis finger force sensor for an intelligent robot's hand)

  • 김갑순
    • 센서학회지
    • /
    • 제15권6호
    • /
    • pp.411-416
    • /
    • 2006
  • This paper describes the development of a 3-axis finger force sensor to grasp an unknown object safely in an intelligent robot's hand. In order to safely grasp an unknown object, robot's hand should measure the weight of an object and the force of grasping direction simultaneous. But, in the published papers, the grippers and hands equippd with the force sensor that could only measure the force of grasping direction, and grasped objects using their sensors. These grippers and hands can't safely grasp unknown objects, because they can't measure the weight of it. Thus, it is necessary to develop 3-axis force sensor that can measure the weight of an object and the force of grasping direction for an intelligent gripper. In this paper, 3-axis finger force sensor to grasp an unknown object safely in an intelligent robot's hand was developed. In order to fabricate a 3-axis finger force sensor, the sensing elements were modeled using parallel plate beams, and the theoretical analysis was performed to determine the size of sensing elements, then the 3-axis finger force sensor was fabricated. Also, the characteristic test of the developed 3-axis finger force sensor was performed.

LABOUR REDUCTION OF TEA PLUCKING OPERATION WITH PORTABLE TYPE MACHINE

  • Iwasaki, K.;Miyabe, Y.;Kashiwagi, S.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.601-610
    • /
    • 1993
  • With the purpose of labour reduction in tea plucking operation with portable type machine, the influence of frame angles and tea leaves weight on the grasping forces of each finger were investigated. At the measurement of the grasping force of each finger except for thumb, grip strength dynamometers were attached at the grasping position of the frame instead of handle grips. A series of measurement was carried out changing frame angles of the tea plucking machine and the weight of tea leaves. With the obtained results of the experiments , the influences of the frame angles and the weight of the tea leaves on the grasping forces of each finger were analyzed. Some reasonable suggestions for the labour reduction in the tea plucking operation with portable type machine were obtained in the aspect of normalizing the balance of the grasping force on each finger and these suggestions are expected to contribute the labour reduction of the tea plucking operation.

  • PDF

미지물체를 안전하게 잡기 위한 6축 로봇손가락 힘/모멘트센서의 개발 (Development of a 6-axis Robot's Finger Force/Moment Sensor for Stably Grasping an Unknown Object)

  • 김갑순
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.105-113
    • /
    • 2003
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously, for stably grasping an unknown object. In order to safely grasp an unknown object using the robot's gripper, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured forces. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed. and the result shows that interference errors of the developed sensor are less than 3%. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object was performed using it. The fabricated gripper could grasp an unknown object stably. Thus, the developed 6-axis robot's finger force/moment sensor may be used for robot's gripper.

안정적 로봇 파지를 위한 인공신경망 (Artificial Neural Network for Stable Robotic Grasping)

  • 김기서;김동언;박진현;이장명
    • 로봇학회논문지
    • /
    • 제14권2호
    • /
    • pp.94-103
    • /
    • 2019
  • The optimal grasping point of the object varies depending on the shape of the object, such as the weight, the material, the grasping contact with the robot hand, and the grasping force. In order to derive the optimal grasping points for each object by a three fingered robot hand, optimal point and posture have been derived based on the geometry of the object and the hand using the artificial neural network. The optimal grasping cost function has been derived by constructing the cost function based on the probability density function of the normal distribution. Considering the characteristics of the object and the robot hand, the optimum height and width have been set to grasp the object by the robot hand. The resultant force between the contact area of the robot finger and the object has been estimated from the grasping force of the robot finger and the gravitational force of the object. In addition to these, the geometrical and gravitational center points of the object have been considered in obtaining the optimum grasping position of the robot finger and the object using the artificial neural network. To show the effectiveness of the proposed algorithm, the friction cone for the stable grasping operation has been modeled through the grasping experiments.

손가락 힘센서를 가진 지능형 로봇손 개발 (Development of Intelligent robot' hand with Three Finger Force Sensors)

  • 김갑순;신희준;김현민
    • 한국정밀공학회지
    • /
    • 제26권1호
    • /
    • pp.89-96
    • /
    • 2009
  • This paper describes the intelligent robot's hand with three finger sensors for a humanoid robot. In order to grasp an unknown object safely, the intelligent robot's hand should measure the mass of the object, and determine the grasping force using the mass, finally control the grasping force using the finger sensors and the controller. In this paper, the intelligent robot's hand for a humanoid robot was developed. First, the six-axis force/moment sensor was manufactured. second, three finger force sensors were designed and fabricated, third, the high-speed controller was manufactured using DSP(digital signal processor), finally, the characteristic test for determining a grasping force and for grasping an unknown object safely It is confirmed that the hand could grasp an unknown object safely.

6 축 힘/모멘트센서를 이용한 구물체 잡기 손가락 힘측정장치 개발 (Development of Finger-force Measuring System with Six-axis Force/moment Sensor for Measuring a Spherical-object Grasping Force)

  • 김현민;윤정원;신희석;김갑순
    • 한국정밀공학회지
    • /
    • 제27권11호
    • /
    • pp.37-45
    • /
    • 2010
  • Stroke patients can't use their hands because of the paralysis of their fingers. Their fingers are recovered by rehabilitating training, and the rehabilitating extent can be judged by grasping a spherical object. At present, the used object in hospital is only a spherical object, and can't measure the force of fingers. Therefore, doctors judge the rehabilitating extent by touching and watching at their fingers. So, the spherical object measuring system which can measure the force of their fingers should be developed. In this paper, the finger-force measuring system with a six-axis force/moment sensor which can measure the spherical-object grasping force is developed. The six-axis force/moment sensor was designed and fabricated, and the force measuring device was designed and manufactured using DSP (digital signal processing). Also, the grasping force test of men was performed using the developed finger-force measuring system, it was confirmed that the average force of men was about 120N.