• Title/Summary/Keyword: Fines content

Search Result 100, Processing Time 0.02 seconds

Characteristics of Stock Drainage Depending on Refining Load and Analysis of Drainage Factors (고해하중변화에 의한 탈수성과 탈수영향 인자 분석)

  • 장현성;박종문
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.2
    • /
    • pp.10-16
    • /
    • 2004
  • Structures and strengths of paper have been studied by analyzing fibers characteristics depending on refining methods. Mixing ratio of softwood and hardwood fibers and fibers characteristics have been analyzed for paper quality improvement. In this study flocculation and drainage of fibers were analyzed to improve the production efficiency and paper product's quality. Floc size and drainage rate depending on stock consistency and fines content were analyzed. Total amount of drainage during drainage process was measured quantitatively by using DI(drainage index). Floc size, viscosity of floc and dewatering times were also measured. In the case of refining load $2.8 kg_f$ , drainage was occurred by filtration mechanism rather than thickening mechanism because drainage resistance increased by fibrillation of fibers. Therefore, the drainage rate of $2.8 kg_f$ refining load stock was slower than that of $5.6 kg_f$.

Flocculation and Retention Phenomena of Microparticle Retention Systems Based on Cationic Guar Gums and Colloidal Silicas (양이온성 구아 검과 콜로이달 실리카를 이용한 보류시스템의 응집 및 보류 현상)

  • 함충현;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.4
    • /
    • pp.1-6
    • /
    • 2001
  • Today's paper industry tries to use greater amount of high yield pulp and recycled fiber and to close mill water system, which results in higher fines content and buildup of organic and inorganic contaminants in white water system. Researches are being focused to develop chemical additives that provide good retention and drainage in a closed papermaking system. A microparticle retention system consisted of cationic guar gum and anionic colloidal silica so has been developed to meet the requirements for improving machine speed and product quality. The objective of this investigation was to determine the effects of the degree of cationic guar gums, charge density and structure of anionic colloidal silica sols, and the degree of system closure on the performances of this microparticle retention system. Cationic guar gums and anionic colloidal silica sols with higher charge densities showed better retention performance. Particularly, wider maximum in retention was obtained when structure colloidal silica was used suggesting as mechanism of microparticle bridging is functioning in this system.

  • PDF

A Study on the Preparation of Granules by Mixer Granulation

  • Lee, Kang-Choon;Shin, Hong-Min;Rhee, Shang-hi;Kim, Yong-Bae
    • Archives of Pharmacal Research
    • /
    • v.2 no.1
    • /
    • pp.17-24
    • /
    • 1979
  • A first systematic approach on new and simple preparation method of spherical granules in the system using organic granulating solution was carried out. Mixer granulation required narrow range of moisture content but gentle action of tumbling in the mixer and capilary forces were adequate to compact the porous mass and also were highly effective to produce granules close to sphere. Where the granules by massing and screening provided the more open structure, its pore distribution lied between 71 and 16 .mu.m by above 50% and on the contrary, that of the mixer granulated granules showed only below 25%. Increase in retention time in the mixer decreased the intragranular porosity of granules produced, and in comparison with granular particles produced by conventional wet granulation, those from the mixer granulation had the advantages of flow properties, packing characteristics and definite spherocity. They also had extremely low friability resulting in few fines.

  • PDF

Fractal equations to represent optimized grain size distributions used for concrete mix design

  • Sebsadji, Soumia K.;Chouicha, Kaddour
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.505-513
    • /
    • 2020
  • Grading of aggregate influences significantly almost all of the concrete performances. The purpose of this paper is to propose practicable equations that express the optimized total aggregate gradation, by weight or by number of particles in a concrete mix. The principle is based on the fractal feature of the grading of combined aggregate in a solid skeleton of concrete. Therefore, equations are derived based on the so-called fractal dimension of the grain size distribution of aggregates. Obtained model was then applied in such a way a correlation between some properties of the dry concrete mix and the fractal dimension of the aggregate gradation has been built. This demonstrates that the parameter fractal dimension is an efficacious tool to establish a unified model to study the solid phase of concrete in order to design aggregate gradation to meet certain requirements or even to predict some characteristics of the dry concrete mixture.

Optimization of Repulping Process of Unsorted ONP for Pulp Mold (I) - Laboratory high consistency pulper - (펄프몰드 제조를 위한 미분류 신문폐지의 펄핑 공정 최적화 (제1보) - 실험용 고농도 펄퍼 이용 -)

  • Ryu, Jeong-Yong;Cho, Byoung-Uk;Kim, Tae-Keun;Park, Dae-Sik;Shin, Eun-Ju;Song, Bong-Keun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.4
    • /
    • pp.38-44
    • /
    • 2007
  • In order to utilize unsorted ONP, which contains leaflets (printed coated papers), to produce pulp mold, optimum conditions for a repulping process were investigated with a laboratory high consistency pulper. It was concluded that medium or high consistency pulping is necessary to accelerate the rate of deflaking of unsorted ONP. Considering flake content, fines content and pulping energy, the optimum conditions for the laboratory Helico pulper were 11% of repulping concentration and 3 min of repulping time. The repulping temperature shall be at least $30^{\circ}C$. Aging of paper slows down the rate of de flaking but in an actual pulp molding process its effect could be negligible.

Effect of White Water Quality on the Adsorption of Cationic PAM on Fibers (백수의 수질이 양이온성 PAM의 흡착에 미치는 영향)

  • Lee, Ji-Young;Lee, Hak-Lae;Youn, Hye-Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.1 s.109
    • /
    • pp.1-9
    • /
    • 2005
  • Many factors which affect the adsorption of cationic polymers on fibers and fines have been investigated by many researchers that include contact time, pH, collision frequency, properties of cationic polymers and adsorbent, etc. But the effect of white water quality on the adsorption of cationic polymer have not been examined throughly. In this study, the adsorption of cationic PAM was analyzed as a function of white water quality. The adsorption of the cationic PAM was analyzed by two analysis methods, Kjeldahl nitrogen content measurement and electrokinetic measurements. When the distilled water was used, adsorbed amount of C-PAM and zeta-potential of fibers increased as a function of the addition of C-PAM. When closure level increased, nitrogen content of fibers increased indicating that the cationic PAM was adsorbed. Zeta-potential of fibers, however, showed no significant change with the increased addition of C-PAM. This showed that adsorption of C-PAM was not reflected by zeta-potential of fibers due to the deteriorated efficiency of C-PAM by the anionic contaminants in white water.

Experimental Evaluation of Cohesion Properties for Various Coals

  • Kim, Minsu;Lee, Yongwoon;Ryu, Changkook;Park, Ho Young;Lee, Hyun Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.279-284
    • /
    • 2016
  • Assessing the handling properties of coal becomes a major issue for the operation of a fuel supply system in power plants, due to the increased types of coal imported into Korea. In this study, the cohesion strengths of 13 bituminous and sub-bituminous coals from different countries were tested by measuring the amount of force that leads to a failure of consolidated particles. The particle size was in the range of 0.1-2.8 mm, which represents the coarse particles before pulverization. While the cohesion strength was proportional to the compression force in the tested range, the effects of the surface moisture content and the weight fraction of fines were crucial for cohesive coals. At fixed conditions of surface moisture and particle size, large variations were found in the cohesion propensity between coals. For coals of 0.1-0.5 mm with the moisture added close to the critical value, cohesive coals had the density over $900kg/m^3$ after consolidation. The cohesion propensity was not correlated with the basic properties of coals with sufficient statistical significance.

세립분 함유량에 따른 새만금준설토의 액상화 특성에 관한 연구

  • Kim, You-Seong;Lee, Soo-Guen;Ko, Hyoung-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1458-1465
    • /
    • 2010
  • A lot of dredging and reclaming projects are recently under way in Korea for the efficient use of limiting land space. Saemanguem area is special case of reclaiming by dredged soil. In case of a confined disposal of dredged soils by a pump dredger, generally coarse grained soils are separated from fines with dropping at the near part of the pump dredger. This kind of seperation of fine contents could be a factor of liquefaction by earthquake. In Korea, recently, earthquakes with magnitude of 3.0 or higher are distinctively increasing in 1990. In this study, cyclic shear characterics of Saemanguem Dredged sand depending on fine content were analyzed. A series of undrained cyclic triaxial test with cyclic stress ratio ($\sigma_d/{2\sigma_{{\upsilon}c}}'$) were performed on both isotropic consolidated specimen and sand with fine contents of 0%, 5%, 15%, 30%, 40% under the effective vertical stress of 100kPa and 50% and 60%, 70% of relative density for fine content of 0%, respectively. In the test results, cyclic shear strength increased by increasing of cyclic stress ratio($\sigma_d/{2\sigma_{{\upsilon}c}}'$) with increasing the relative density at the same number of cyclic under the effective confining pressure of 100kPa. It is almost highest the double amplitude(DA) 1%, 3%, 5%, 7.5% and 10% at fine content of 15% between Cyclic stress ratio($\sigma_d/{2\sigma_{{\upsilon}c}}'$) value at cyclic number five and fine content. Number of cyclic is 30 under the effective vertical stress of 100kPa, 70% of relative density for fine content of 15%. when the cyclic stress ratio at each relative density was compared at cyclic number five, the double amplitude(DA) 1%, 3%, 5%, 7.5% and 10%, and the pore-pressure ratio (${\Delta}u/{\sigma'}_c$) 0.95 value were compared; under the relative density of 70% and the effective confining pressure of 100kPa. The pore-pressure ratio (${\Delta}u/{\sigma'}_c$) 0.95 value showed a similar trend to the double amplitude (DA) 5% line.

  • PDF

Influence of grain size ratio and silt content on the liquefaction potentials of silty sands

  • Sonmezer, Yetis Bulent;Kayabali, Kamil;Beyaz, Turgay;Fener, Mustafa
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.167-181
    • /
    • 2022
  • Soil liquefaction has been one of the most important concerns in geotechnical earthquake engineering in recent years, due to its damages to structures and its destructive effects. The cyclic liquefaction of silty sands, in particular, remains of great interest for both research and application. Although many factors are known that affect the liquefaction resistance of sands, the effect of fine grain content is perhaps one of the most studied and still controversial. In this study, 48 deformation-controlled cyclic simple shear tests were performed on BS and CS silt samples mixed with 5%, 15% and 30% by weight of Krk085, Krk042 and Krk025 sands in constant-volume conditions to determine the liquefaction potential of silty sands. The tests were carried out at 30% and 50% relative density and under 100 kPa effective stress. The results revealed that the liquefaction potential of silty sand increases with increasing average particle size ratio (D50sand / d50silt) of the mixture for a fixed silt content. Furthermore, for identical base sand, the liquefaction potentials of coarse grained sands increase with increasing silt content, while the respective potentials of fine grained sands generally decrease. However, this situation may vary depending on the silt grain structure and is affected by the nature of the fine grains. In addition, the variation of the void ratio interval was shown to provide a good intuition in determining the liquefaction potentials of silty sands, while the intergranular void ratio alone does not constitute a criterion for determining the liquefaction potentials of silty sands.

Effect of Replacement Ratio of Sand Compaction Pile of Fine-Grained Soils With Reclamed Land (준설매립지반의 세립토가 SCP공법의 치환율에 미치는 영향)

  • Kim, Jong-Kook;Yoon, Won-Sub;Chae, Young-Soo;Choi, In-Gul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1192-1201
    • /
    • 2009
  • The ground work with of the research is constructed by a SCP method to improve clay ground in the sedimentary layer and sand ground in the reclamation layer at the same time as a reclaimed soft ground by reclaiming deep depth. Improved fine-grained soils in the sand ground decrease the ground improvement effect and have an influence on replacement ratio of SCP method. Fine-Grained soils which advances in sand ground reduces a from improvement effect, Makes affect in replacement ratio of SCP method. In this study, consideration about replacement ratio of sand ground, Tried to observe affects in replacement ratio of fine-grained soils SCP method of dredging reclamation ground. The result, replacement ratio which follows in the Japan Geotechnical Society experience-chart(1988) recording where fine-grained soils content will increase feebly, was visible the aspect which increases progressively, replacement ratio in compliance with Gibbs and Holts(1973) methods according to fine-grained soils increase is visible the tendency which decreases gradually with the enemy. Specially, according to case fine-grained content of Mizuno(1987) methods increases, replacement ratio suddenly was showing the trend which rises from of 50% and according to fine-grained soils increase was overestimated.

  • PDF