• Title/Summary/Keyword: Fineness Modulus

Search Result 80, Processing Time 0.023 seconds

Stress-strain behavior of geopolymer under uniaxial compression

  • Yadollahi, Mehrzad Mohabbi;Benli, Ahmet
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.381-389
    • /
    • 2017
  • The various types of structural materials that are available in the construction industry nowadays make it necessary to predict their stress-strain behavior. Geopolymer are alternatives for ordinary Portland cement concrete that are made from pozzolans activation. Due to relatively new material, many mechanical specifications of geopolymer are still not yet discovered. In this study, stress-strain behavior has been provided from experiments for unconfined geopolymers. Modulus of Elasticity and stress-strain behavior are critical requirements at analysis process and knowing complete stress-strain curve facilitates structural behavior assessment at nonlinear analysis for structures that have built with geopolymers. This study intends to investigate stress-strain behavior and modulus of elasticity from experimental data that belongs for geopolymers varying in fineness and mix design and curing method. For the sake of behavior determination, 54 types of geopolymer are used. Similar mix proportions are used for samples productions that have different fineness and curing approach. The results indicated that the compressive strength ranges between 7.7 MPa and 43.9 MPa at the age of 28 days curing.

Influence of Particle Properties of Crushed Sand on the Qualities of Concrete (부순모래의 입자특성이 콘크리트의 품질에 미치는 영향)

  • Yoo Seung-Yeup;Sohn Yu-Shin;Lee Seung-Hoon;Lee Gun-Cheol;Yoon Gi-Won;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.89-92
    • /
    • 2005
  • This study investigates influence of particle properties of crushed sand on the duality of concrete. The test shows that an increase of fineness modulus(FM) resulted in high slump and air contents, while compressive strength decreased due to decreased adhesion with reduction of surface area. As grain shape become rounder, the slump of concrete increased, due to reduction of internal friction, and increased air contents. The reduction of adhesion by abrasion of surface declined compressive strength during the process of manufacturing crushed sand. Increase of powder contents decreased slump and it also decreased air contents due to the effect of filling air void. In addition. using powder contents increased compressive strength, but could not find any difference of bleeding and tensile strength with particle properties.

  • PDF

An Experimental Study for Crack Prevention of Floor Mortar (바닥용 모르타르의 균열방지를 위한 실험적 연구)

  • 정재동;김진근;최응규;이칠성;이상순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.202-207
    • /
    • 1996
  • Recently, the mortar crack on floor is very serious in construction field, e.g. the crack due to plastic shrinkage and the crack due to drying shrinkage. To prevent this kind of crack, optimum mix propertions not only satisfying the required workability but also minimizing the unit water content were selected. And the expansion admixtures were used to compensate the shrinkage of mortar. This study shows that water/cement ratio used in construction field is about 64%. Even if we reduce water/cement ratio of mortar by the appropriate use the fine aggregate with high fineness modulus and superplastizer, floor mortar can have the required workability. The equations between mortar flow and water/cement ratio, sand/cement ratio, fineness modulus of fine aggregate were proposed in this study. And this equation may provide available mix proportions of floor mortar.

  • PDF

A Study on Size Distribution of Oyster Shell According to the Change of Inverter Cutter Mill Speed (커터 밀 인버터의 속도변화에 따른 굴 패각의 입도분포에 관한 연구)

  • Jung, Ui-In;Heo, Min-Hoe;Yu, Nam-Gyu;Kim, Bong-Joo;Won, Chul-Hee;Park, Jung-Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.98-99
    • /
    • 2016
  • Oyster shell is light weighted and its strength characteristic is similar to sand so we have reviewed to find its suitability of aggregate. Therefore we found fineness modulus and size distribution of oyster shell by grinding it with inverter cutter mill varying inverter speed and screening size. In our test, the fineness modulus has tendency of decrease in higher speed and tendency of increase in bigger diameter of screening size. 5~2.5mm, 2.5~1.2mm, 1.2~0.6mm, and below 0.6mm of oyster shell particle size could be used in further test for suitability of aggregate.

  • PDF

A Study on Strength Characteristic as the Fineness Modulus and Curing Method of Oyster shells (굴 패각의 조립률 및 양생방법에 따른 강도특성에 관한 연구)

  • Jung, Ui-In;Hong, Sang-Hun;You, Nam-Gyu;Song, Seung-Li;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.62-63
    • /
    • 2018
  • Oyster shell is produce by shucking process in oyster farming in southern coast of Korea. In average, about 6.7kg of oyster shell is produced as an industrial waste for 1kg of oyster flesh, and even only in last year, it is estimated that about 150,000 ton of oyster shell is produced. Oyster shell is light weighted and the strength characteristic of it is similar to send. So we produced mortar test piece using grounded oyster shell according to aggregate and reviewed strength characteristic. Therefore, in this study, the strength characteristics of the test specimen are evaluated by artificially altering fineness modulus and curing method by processing oyster shells.

  • PDF

Curing effect on mortar properties produced with styrene-butadiene rubber

  • Cemalgil, Selim;Etli, Serkan;Onat, Onur
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.705-715
    • /
    • 2018
  • This paper presents an experimentally investigation pertinent to the mechanical properties of rubberized mortar (RM) with styrene-butadiene rubber (SBR). The SBR were used with constant water-to-cement ratio of 0.485 and two different volume proportion of SBR particles were utilized as aggregates. One types of SBR particles with fineness modulus of 4.951 were utilized 0%, 10%, and 20% of aggregate volume. Effectiveness of SBR replacement ratio, curing and aging effect on the compressive strength, flexural strengths as well as load-displacement. Compressive and flexural strength of concrete were investigated at the end of 28-days and 56-days age. Obtained results demonstrated that utilization of SBR reduced the flexural strength of SBR mortar at the earlier curing age while SBR increased. Moreover, mechanical properties of mortar mentioned above were significantly affected by the water cure timing with an increasing proportion of the replacement level of SBR.

Effects of Cement Fineness Modulus (CFM) on the Fundamental Properties of Concrete (시멘트 입도계수(CFM)가 콘크리트의 기초적 특성에 미치는 영향)

  • Noh, Sang-Kyun;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.284-290
    • /
    • 2012
  • Cement Fineness Modulus (CFM) is a method of expressing the distribution of particle sizes of cement in numeric form. If CFM is controlled through crush process of cement without modifying the chemical components or mineral composition of cement, it is judged to be able to produce a cement satisfying various requirements because it is estimated to enable various approaches to cement such as high early strength, moderate heat, low heat cement and so on. Therefore, in this study, as basic research for manufacturing special cement utilizing the controls of CFM, the intention was to review the impacts of CFM on the fundamental properties of concrete. To summarize the result, as mixture characteristics of fresh concrete, ratio of small aggregate and unit quantity were gradually increased, securing greater fluidity, with an increase in CFM, while the amount of AE and SP were reduced gradually. In addition, setting time was delayed as CFM increased. Furthermore, compression strength was relatively high during initial aging as CFM became smaller, but as time passed, compression strength became smaller, and it showed the same level of strength as aging time passed about three years.

Study on the Physical Properties of the Artificial Lightweight Aggregate Recycled from the Dyestuff Sludge Treated Chemically With Ti and Fe Salt (Ti염 및 Fe염으로 화학처리된 염색공단 슬러지를 재활용한 인공경량골재의 물리적 특성에 관한 연구)

  • Choi, Jong-Oh;Jung, Yong-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.34-42
    • /
    • 2015
  • The paper investigates environmental hazards and characteristics of the artificial lightweight aggregate manufactured by using dyestuff sludge from dyeing industrial complex. The dyestuff sludge used in this study is chemically treated with Ti and Fe salt for the purpose of recycling. The artificial lightweight aggregate is manufactured through 3 step; 1) Selecting the optimum moisture content by evaluating plasticity from the mixing ratio of the clay and sludge, 2) shaping round type based on the optimum mixing ratio, 3) drying and Sintering process. Based on KS F 2534 "Lightweight Aggregate for Structural concrete", the particle size, fineness modulus, the density, absorption, unit volume weight, stability and environmental hazards of the manufactured lightweight aggregate are evaluated. Experimental results show that the particle size and fineness modulus is out of the range. However, it is observed that other physical properties are within criteria. In addition, it is confirmed that the problem of the particle size and fineness modulus could be solved in the manufacturing process.

Fundamental Characteristics of Concrete According to Fineness Modulus and Replacement Ratio of Crushed Sand (부순모래의 조립률 및 치환률에 따른 콘크리트의 기초 특성)

  • Yun, Yong-Ho;Choi, Jong-Oh;Lee, Dong-Gyu;Jung, Yong-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.244-251
    • /
    • 2015
  • The paper evaluates the effect of the physical property, fineness modulus (FM) and replacement ratio of crushed sand on the characteristics of concrete. This is intended to use crushed sand from Daegu-Kyungbuk region as the fine aggregate of concrete. The experimental result indicates that the replacement ratio of crushed sand needs to be less than 50% to satisfy the mixed gradation of both natural and crushed sand when their FMs are 2.0 and 3.2, respectively. The slump of concrete with crushed sand increased as the replacement ratio of crushed sand increased, while the workability of concrete with the replacement ratio of more than 75% was significantly reduced. The air content and bleeding rate of concrete was reduced as the replacement ratio increased. Furthermore, due to the enhancement of the concrete adhesive regardless of the FM of crushed sand, compressive strength of concrete tended to improve as the replacement ratio increased.

Application of Waste Foundry Sand for Concrete-Based Products of Low Water Ratio (낮은 물비를 갖수용성 합성 절삭유의 재사용을 위한 한외여과 연구는 콘크리트 제품에 대한 폐주물사의 적용)

  • Kim, Jin-Man;Cho, Sung-Hyun;Kwak, Eun-Goo
    • Clean Technology
    • /
    • v.8 no.3
    • /
    • pp.129-139
    • /
    • 2002
  • This is the study for recycling waste foundry sand. Authors studied about main subject of grading of aggregate and three experimental items such as physical properties of waste foundry sand, optimum grading for concrete products of low water ratio, and quality variations of concrete products according to substitution proportion of fine aggregate as waste foundry sand. We were convinced of following results by experimental study. The first was that waste foundry sand was not fit as the aggregate for concrete because of bad qualities such as grading, unit weight, solid volume and passing 0.08 mm seive, so it is proper to composition using with other fine aggregetes. The second was that optimum grading is fineness modulus of 2.77 to 3.28 And the last is that optimum condition about substitution proportion as waste foundry sand is 10% fine aggregate.

  • PDF