• Title/Summary/Keyword: Fine-Tuning hyperparameters

Search Result 3, Processing Time 0.017 seconds

FinBERT Fine-Tuning for Sentiment Analysis: Exploring the Effectiveness of Datasets and Hyperparameters (감성 분석을 위한 FinBERT 미세 조정: 데이터 세트와 하이퍼파라미터의 효과성 탐구)

  • Jae Heon Kim;Hui Do Jung;Beakcheol Jang
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.127-135
    • /
    • 2023
  • This research paper explores the application of FinBERT, a variational BERT-based model pre-trained on financial domain, for sentiment analysis in the financial domain while focusing on the process of identifying suitable training data and hyperparameters. Our goal is to offer a comprehensive guide on effectively utilizing the FinBERT model for accurate sentiment analysis by employing various datasets and fine-tuning hyperparameters. We outline the architecture and workflow of the proposed approach for fine-tuning the FinBERT model in this study, emphasizing the performance of various datasets and hyperparameters for sentiment analysis tasks. Additionally, we verify the reliability of GPT-3 as a suitable annotator by using it for sentiment labeling tasks. Our results show that the fine-tuned FinBERT model excels across a range of datasets and that the optimal combination is a learning rate of 5e-5 and a batch size of 64, which perform consistently well across all datasets. Furthermore, based on the significant performance improvement of the FinBERT model with our Twitter data in general domain compared to our news data in general domain, we also express uncertainty about the model being further pre-trained only on financial news data. We simplify the complex process of determining the optimal approach to the FinBERT model and provide guidelines for selecting additional training datasets and hyperparameters within the fine-tuning process of financial sentiment analysis models.

Avocado Classification and Shipping Prediction System based on Transfer Learning Model for Rational Pricing (합리적 가격결정을 위한 전이학습모델기반 아보카도 분류 및 출하 예측 시스템)

  • Seong-Un Yu;Seung-Min Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.329-335
    • /
    • 2023
  • Avocado, a superfood selected by Time magazine and one of the late ripening fruits, is one of the foods with a big difference between local prices and domestic distribution prices. If this sorting process of avocados is automated, it will be possible to lower prices by reducing labor costs in various fields. In this paper, we aim to create an optimal classification model by creating an avocado dataset through crawling and using a number of deep learning-based transfer learning models. Experiments were conducted by directly substituting a deep learning-based transfer learning model from a dataset separated from the produced dataset and fine-tuning the hyperparameters of the model. When an avocado image is input, the model classifies the ripeness of the avocado with an accuracy of over 99%, and proposes a dataset and algorithm that can reduce manpower and increase accuracy in avocado production and distribution households.

Statistical Method and Deep Learning Model for Sea Surface Temperature Prediction (수온 데이터 예측 연구를 위한 통계적 방법과 딥러닝 모델 적용 연구)

  • Moon-Won Cho;Heung-Bae Choi;Myeong-Soo Han;Eun-Song Jung;Tae-Soon Kang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.543-551
    • /
    • 2023
  • As climate change continues to prompt an increasing demand for advancements in disaster and safety management technologies to address abnormal high water temperatures, typhoons, floods, and droughts, sea surface temperature has emerged as a pivotal factor for swiftly assessing the impacts of summer harmful algal blooms in the seas surrounding Korean Peninsula and the formation and dissipation of cold water along the East Coast of Korea. Therefore, this study sought to gauge predictive performance by leveraging statistical methods and deep learning algorithms to harness sea surface temperature data effectively for marine anomaly research. The sea surface temperature data employed in the predictions spans from 2018 to 2022 and originates from the Heuksando Tidal Observatory. Both traditional statistical ARIMA methods and advanced deep learning models, including long short-term memory (LSTM) and gated recurrent unit (GRU), were employed. Furthermore, prediction performance was evaluated using the attention LSTM technique. The technique integrated an attention mechanism into the sequence-to-sequence (s2s), further augmenting the performance of LSTM. The results showed that the attention LSTM model outperformed the other models, signifying its superior predictive performance. Additionally, fine-tuning hyperparameters can improve sea surface temperature performance.