• Title/Summary/Keyword: Fine soils

Search Result 343, Processing Time 0.021 seconds

잔골재로서 하수준설토의 재활용에 관한 연구

  • Lee, Song;Chae, Jeom-Sik;Kim, Hyeok
    • 레미콘
    • /
    • no.10 s.69
    • /
    • pp.2-11
    • /
    • 2001
  • This paper describes the feasiblity of recycling sewage dredged soils as fine affrefate. This paper describes the feasibility of recycling sewage dredged soils as fine aggregate. The specific gravity of the dredged soils was smaller than that of sand due to the effect of dredged sludge. However, the grain size distribution of the dredged soils is relative well graded, and the results of the heavy metal concentration from the leaching test of the dredged soils was significantly lower than the requirements of the allowable criteria. Therefore, the effect of recycling of dredged soils on environment the as fine aggregate was negligible. Also, the specific gravity of the dredged and washed soils was similar to that of sand, and the dredged and washed soils for the most part showed lower heavy metal leaching characteristics than those of dredged soils, Also, the results of the study for evaluation the recycling feasibility of dredged and washed soils as fine affrefate. The organic impurity content of the dredged and washed soils was lower than the requirements of the Korean industrial Standards, and the mortar compressive strength using the washdredged soils also met those of the Korean industrial Standards. And, the strengths of the dredged and washed soils were over 95% of those of the NaOH-treated samples. Therefore, it is expected that the dredged soils will be able to be an alternative for fine aggregate.

  • PDF

Effect of Replacement Ratio of Sand Compaction Pile of Fine-Grained Soils With Reclamed Land (준설매립지반의 세립토가 SCP공법의 치환율에 미치는 영향)

  • Kim, Jong-Kook;Yoon, Won-Sub;Chae, Young-Soo;Choi, In-Gul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1192-1201
    • /
    • 2009
  • The ground work with of the research is constructed by a SCP method to improve clay ground in the sedimentary layer and sand ground in the reclamation layer at the same time as a reclaimed soft ground by reclaiming deep depth. Improved fine-grained soils in the sand ground decrease the ground improvement effect and have an influence on replacement ratio of SCP method. Fine-Grained soils which advances in sand ground reduces a from improvement effect, Makes affect in replacement ratio of SCP method. In this study, consideration about replacement ratio of sand ground, Tried to observe affects in replacement ratio of fine-grained soils SCP method of dredging reclamation ground. The result, replacement ratio which follows in the Japan Geotechnical Society experience-chart(1988) recording where fine-grained soils content will increase feebly, was visible the aspect which increases progressively, replacement ratio in compliance with Gibbs and Holts(1973) methods according to fine-grained soils increase is visible the tendency which decreases gradually with the enemy. Specially, according to case fine-grained content of Mizuno(1987) methods increases, replacement ratio suddenly was showing the trend which rises from of 50% and according to fine-grained soils increase was overestimated.

  • PDF

Prediction of California bearing ratio (CBR) for coarse- and fine-grained soils using the GMDH-model

  • Mintae Kim;Seyma Ordu;Ozkan Arslan;Junyoung Ko
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.183-194
    • /
    • 2023
  • This study presents the prediction of the California bearing ratio (CBR) of coarse- and fine-grained soils using artificial intelligence technology. The group method of data handling (GMDH) algorithm, an artificial neural network-based model, was used in the prediction of the CBR values. In the design of the prediction models, various combinations of independent input variables for both coarse- and fine-grained soils have been used. The results obtained from the designed GMDH-type neural networks (GMDH-type NN) were compared with other regression models, such as linear, support vector, and multilayer perception regression methods. The performance of models was evaluated with a regression coefficient (R2), root-mean-square error (RMSE), and mean absolute error (MAE). The results showed that GMDH-type NN algorithm had higher performance than other regression methods in the prediction of CBR value for coarse- and fine-grained soils. The GMDH model had an R2 of 0.938, RMSE of 1.87, and MAE of 1.48 for the input variables {G, S, and MDD} in coarse-grained soils. For fine-grained soils, it had an R2 of 0.829, RMSE of 3.02, and MAE of 2.40, when using the input variables {LL, PI, MDD, and OMC}. The performance evaluations revealed that the GMDH-type NN models were effective in predicting CBR values of both coarse- and fine-grained soils.

Characteristics of Shear Strength for Recycled Fine Aggregates Mixed Soil (순환잔골재 혼합토의 전단강도 특성)

  • Im, Weulsook;Kwon, Jeunghoon;Kim, Minwook;Kim, Youngmuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.47-55
    • /
    • 2010
  • The recycled fine aggregates were mixed with weathered granite soils typically used for fill materials and tested engineering properties, physical properties, and compaction characteristics according to the mixing ratio of the mixed soils. The results of this study were as follows. For the results of A-type compaction test, the recycled fine aggregates showed low effects compared to the weathered soils, but the mixed soils which were mixed with the weathered granite soils and the recycled fine aggregates showed good compaction effects. Especially, the mixing ratio of 70:30 by weight showed for maximum compaction result. From the results of the direct shear test, the cohesion was ince csed according to proportion of the weathered granite soils. The weathered granite soils neared the optimum moisture content showed for maximum shear strength paramcoers, while the cohesion of the mixed soil was relatively ince csed in the wet side of the optimum moisture content. This trend was seemed to remained cence composition in the recycled fine aggregates. The internal friction angle of the recycled fine aggregates and the mixed soils showed maximum value near dry side of the optimum moisture contents. And the internal friction angles of the mixed soils were increased according to higher proportion of the recycled fine aggregates.

A Study on the Analysis of Reusability of Marine Dredged Fine-grained Soils (해양 준설세립토의 재사용성 분석에 관한 연구)

  • Kim, Chaemin;Mork, Jeongheum;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.5-12
    • /
    • 2015
  • A large amount of dredged soils occur in the marine purification project but dredged fine-grained soils have been abandoned as a waste. The standards as filling materials, banking materials, revetment blocks and concrete blocks were surveyed. Through the geotechnical tests of marine dredged fine-grained soils and the alkali-activation reaction, the usability as banking materials, revetment blocks and concrete blocks were analyzed. Dredged sands could be used as banking materials, and dredged fine-grained soils could be used as filling materials. A mixture of dredged fine-grained soils and dredged sands could be used as banking materials. Materials produced by the alkali-activation reaction could be used as a revetment block and a concrete block.

Cyclic Triaxial Test on Undisturbed Sample in the Fine-Grained Soils that Experienced Ground Settlement by Earthquake Loading and Improving Korean Method for Liquefaction Potential Assessment (지진시 지반침하가 발생한 세립토지반의 불교란시료를 대상으로 한 반복삼축시험의 수행과 국내 액상화 평가법의 제고)

  • Choi, Jae Soon;Baek, Woo Hyun;Jin, Yoon Hong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.67-75
    • /
    • 2024
  • In the case of the Pohang earthquake, which had a magnitude of 5.4 in 2017, geotechnical damages such as liquefaction and ground settlement occurred. The need for countermeasures has emerged, and experimental research in the Pohang area has continued. This study collected undisturbed samples from damaged fine-grained soil areas where ground settlement occurred in Pohang. Cyclic tri-axial tests for identifying the dynamic characteristics of soils were performed on the undisturbed samples, and the results were analyzed to determine the cause of ground settlement. As a result of the study, it was determined that in the case of fine-grained soils, ground settlement occurred because the seismic load as an external force was relatively more significant than the shear resistance of the very soft fine-grained soils, rather than due to an increase in excess pore water pressure.

Measurements of Erosion Rate in Fine-Grained Soils (세립토의 침식율 측정)

  • 곽기석;정문경;정하익;우제윤;조삼덕
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.337-342
    • /
    • 2002
  • A new apparatus called the EFA (Erosion Function Apparatus) has been built and tested to measure the erodibility of fine-grained soils. The EFA is a simple test to predict the erosion rate of fine-grained soils along with the corresponding velocity and shear stress. In addition, it is advantageous in predicting the scour rate for actual soil samples from bridge sites. The plot of erosion rate versus shear stress is the result of an EFA test. It Indicates the critical shear stress at which erosion starts and the rate of erosion beyond that shear stress. In order to measure the erodibilities of various soils, 14 Shelby Tube soil samples are collected from the actual bridge sites and tested using the EFA. The results of the EFA tests which are the relationships between erosion rates and shear stresses are presented in this paper and research continues to develop the correlation between the erosion function and the soil properties.

  • PDF

Measurements of Permeability Characteristics for Unsaturated Weathered Soils (불포화 풍화토의 투수특성 측정)

  • Ryu, Ji-Hyeop
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.133-142
    • /
    • 2000
  • Series of tests were carried out to study permeability characteristics of unsaturated soils. The weathered soils taken from Inju, Sungwhan, and Kuri, were selected to have different amount of fine grained soils in order to find a possible correlation between the unsaturated permeability behavior and fine grained soils contents. Measurements of permeability for unsaturated soils were performed with a newly developed apparatus, which modeled after Klute's apparatus(1965a). The apparatus was designed to measure volumetric water content and permeability by applying incremental suction pressure. Permeability and volumetric water content of unsaturated soils generally decreased as density of the soil increased. The relationship between volumetric water content and permeability was not related to the fine grained soils contents because the plots scattered widely. By comparing volumetric water content with permeability, empirical parameters A and B could be determined, which made to be possible to predict unsaturated permeability from soil-moisture characteristics.

  • PDF

Evaluation of Local Erosion Characteristics of Fine-Grained Soils in the West Coast Area (서해안 세립토의 국지적 침식특성 평가)

  • Kwak, Kiseok;Lee, Juhyung;Park, Jae Hyun;Woo, Hyo Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.323-331
    • /
    • 2006
  • It is a recent worldwide trend that erosion characteristics of soil, the resistance factor against scour, are quantified and considered in the estimation of scour depths in fine-grained soils. As part of the efforts, local erosion characteristics on fine-grained soils of the West Coast area are analyzed through scour rate experiments, where a lot of sea-crossing long-span bridges are planned and being constructed in recent years. Four sites including Incheon Bridge, Choji Bridge, Hwankyung Bridge, and Janghang area are finally selected for this study and the scour rate tests are performed using 34 undisturbed soil samples from the sites. The critical shear stresses which represent erodibility of the soil tend to be proportional to the undrained shear strength values. The relative ability of cohesive fine-grained soils to resist erosion is assumed to be higher than that of noncohesive soils. Quantified local erosion characteristics of fine-grained soils in the West Coast area are presented in forms of charts showing relationships between scour rates and shear stresses, and suggested as basic data for the estimation of scour depths and design of bridge foundations in the West Coast area.

The Strength Characteristics of Solidified Sandy Soils with Mixing Conditions (배합조건에 따른 고결사질토의 강도특성)

  • Yu, Chan;Chang, Pyung-Wuck;Lee, Chang-No;Roh, Gwang-Ha
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.02a
    • /
    • pp.84-95
    • /
    • 1999
  • Laboratory experiments were performed to evaluate the strength characteristics of solidified sandy soils by portland cement with mixing conditions. Factors considered in the experiments were the fine content(<#200, %), cement content(%) and water-cement ratio and unconfined compressive strength tests were performed on samples at 7 and 28 cured day. Results of tests showed that for a low cement content(7%∼10%) the fine content was very important while for a high cement content the water-cement ratio was very important. For 7%∼10% cement content, the optimum fine content which gained maximum strength was about 30%. But for 13% cement content, low fine content and water-cement ratio were more useful than others. In the multi regression analysis, significant equation was gained.

  • PDF