• Title/Summary/Keyword: Fine particulate matter

Search Result 277, Processing Time 0.034 seconds

Comparison and analysis of prediction performance of fine particulate matter(PM2.5) based on deep learning algorithm (딥러닝 알고리즘 기반의 초미세먼지(PM2.5) 예측 성능 비교 분석)

  • Kim, Younghee;Chang, Kwanjong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.7-13
    • /
    • 2021
  • This study develops an artificial intelligence prediction system for Fine particulate Matter(PM2.5) based on the deep learning algorithm GAN model. The experimental data are closely related to the changes in temperature, humidity, wind speed, and atmospheric pressure generated by the time series axis and the concentration of air pollutants such as SO2, CO, O3, NO2, and PM10. Due to the characteristics of the data, since the concentration at the current time is affected by the concentration at the previous time, a predictive model for recursive supervised learning was applied. For comparative analysis of the accuracy of the existing models, CNN and LSTM, the difference between observation value and prediction value was analyzed and visualized. As a result of performance analysis, it was confirmed that the proposed GAN improved to 15.8%, 10.9%, and 5.5% in the evaluation items RMSE, MAPE, and IOA compared to LSTM, respectively.

Distinct Oxidative Damage of Biomolecules by Arrays of Metals Mobilized from Different Types of Airborne Particulate Matters: SRM1648, Fine (PM2.5), and Coarse (PM10) Fractions

  • Park, Yong Jin;Lim, Leejin;Song, Heesang
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.139-143
    • /
    • 2013
  • This study was performed to examine the in vitro toxicities which are incurred due to the mobilization metals from standard reference material (SRM) 1648, fine ($PM_{2.5}$), and coarse ($PM_{10}$) particulate matter collected in Seoul metropolitan area. DNA single strand breaks of approximately 74% and 62% for $PM_{2.5}$ and for $PM_{10}$, respectively, were observed in the presence of chelator (EDTA or citrate)/reductant (ascorbate), as compared to the control by 2% without chelator or reductant. $PM_{2.5}$ induced about 40% more carbonyl formation with proteins in the presence of EDTA/ascorbate than $PM_{10}$. Therefore, more damage to biomolecules was incurred upon exposure to $PM_{2.5}$ than to $PM_{10}$. The treatment of a specific chelator, desferrioxamine, to the reaction mixture containing chelator plus reductant decreased the extent of damage to DNA to the level of the control, but did not substantially decrease the extent of damage to proteins. This suggests that different arrays of metals were involved in the oxidation of DNA and proteins.

OXIDATION CHARACTERISTICS OF PARTICULATE MATTER ON DIESEL WARM-UP CATALYTIC CONVERTER

  • Choi, B.C.;Yoon, Y.B.;Kang, H.Y.;Lim, M.T.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.527-534
    • /
    • 2006
  • Modern passenger cars with diesel engines are equipped with DOC(diesel oxidation catalyst) for the purpose of reducing HC and CO in the exhaust stream. Cold start exhaust emissions pose troubles here as on gasoline engine vehicles. As a result, some of the diesel passenger cars roll off todays the assembly lines with WCC(warm-up catalytic converter). Oxidation characteristics of the particulates in WCC is analyzed in this study by EEPS(engine exhaust particulate size spectrometer). The maximum number of PM is found to come out of WCC in sizes near 10nm when an HSDI diesel engine is operated under the conditions of high speed and medium to heavy load. When the temperature of the WCC exceeds $300^{\circ}C$, the number of PM smaller than 30 nm in diameter sharply increases upon passing through the WCC. Total mass of emitted PM gets reduced downstream of the WCC under low speed and light load conditions due to adsorption of PM onto the catalyst. Under conditions of high speed and medium to heavy load, the relatively large PM shrink or break into fine particles during oxidation process within the WCC, which results in more mass fraction of fine particles downstream of the WCC.

Measurements of Particulate Matters for the HSDI Diesel Engine with DOC using the ELPI (ELPI를 이용한 산화촉매 장착 고속 직접분사식 디젤엔진의 입자상물질 계측)

  • Choi, Byung-Chul;Jang, Se-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2245-2250
    • /
    • 2003
  • Particulate matters(PM) have bad effect on the health. We carried out measurements of diesel PM under $10{\mu}m$ diameter from a HSDI diesel engine with a diesel oxidation catalyst(DOC) by using the ELPI. This paper compares the two results of the smoke level and the PM level of masses and numbers. We also investigated the effect of the DOC. Under high speed and load, HSDI diesel engine exhausts much masses of particulate matters over 100nm diameter, and a number of PM from 7 to 100nm diameters at the same condition. DOC could reduce the total mass of the PM. However, the DOC could increase the number of ultra fine PM. Before light-off of the soot, the DOC absorb the PM and the DOC oxidize the PM after light-off temperature. The fine PM could be made during the oxidation. Therefore, the advanced DOC is needed to reduce the number of the fine PM.

  • PDF

Impact of Dust Transported from China on Air Quality in Korea -Characteristics of PM2.5 Concentrations and Metallic Elements in Asan and Seoul, Korea

  • Yang, Won-Ho;Son, Bu-Soon;Breysse, Patrick;Chung, Tae-Woong
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.6
    • /
    • pp.479-487
    • /
    • 2007
  • [ $PM_{2.5}$ ], particulate matter less than 2.5 um in a diameter, can penetrate deeply into the lungs. Exposure to $PM_{2.5}$ has been associated with increased hospital visits for respiratory aliments as well as increase mortality. $PM_{2.5}$ is a byproduct of combustion processes and as such has a complex composition including a variety of metallic elements, inorganic and organic compounds as well as biogenic materials (microorganisms, proteins, etc). In this study, the average concentrations of fine particulates $PM_{2.5}$ have been measured simultaneously in Asan and Seoul, Korea, by using particulate matter portable sampler from September 2001 to August 2002. Sample collection filters were analyzed by ICP-OES to determine the concentrations of metallic elements (As, Ni, Fe, Cr, Cd, Cu, Pb, Zn, Si). Annual mean $PM_{2.5}$ concentrations in Asan and Seoul were 37.70 and $45.83\;{\mu}g/m^3$, respectively. The highest concentrations of $PM_{2.5}$ were found in spring season in both cities and the concentrations of measured metallic elements except As in Asan were higher than those in Seoul, suggesting that yellow dust in spring could affect $PM_{2.5}$ concentrations in Asan rather than Seoul. The correlation coefficients of Pb and Zn were 0.343 for Asan and 0.813 for Seoul during non-yellow dust condition, suggesting that Pb and Zn were influenced with the same sources. The correlation coefficients between Si and Fe in the fine particulate mode were 0.999 (Asan) and 0.998 (Seoul) during yellow dust condition. It was suggested that these two elements were impacted by soil-related transport from China during the yellow dust storm condition.

Study on the Change of Physical Characteristics by Polarity and Additives of SiC DPF Binder for Diesel Engine Application (디젤엔진에 적용하기 위한 SiC DPF용 접합제의 극성 및 첨가물에 따른 물리적 특성 변화에 관한 연구)

  • Kim, Jinwon;Ryu, Younghyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.974-981
    • /
    • 2019
  • Fine dust has become a significant social problem. Diesel engines are used as the main propulsion power source in ships. This study introduces a diesel particulate filter (DPF) that is used as an exhaust after-treatment system for diesel engines to reduce particulate matter known as diesel fine dust. Two materials are used for the DPF: Cordierite and silicon carbide (SiC). In this study, to improve the physical properties of the binder used in the SiC DPF, cordialite was used instead of the SiC-based materials used as the conventional binder to evaluate the thermal durability against high-temperature deformation through the change of the coefficient of thermal expansion. In addition, the physical properties of the silica sol, as a main component of the base coating solution for determining the bond between the binder and the segment, were confirmed. Based on this, the change effect of the binder physical properties was confirmed through experiments by either adding a silane coupling agent or SiC to increase the reactivity of the silica sol.

An Asian Dust Compensation Scheme of Light-Scattering Fine Particulate Matter Monitors by Multiple Linear Regression (다중 선형 회귀에 의한 광산란 초미세먼지 측정기의 황사 보정 기법)

  • Baek, Sung Hoon
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.8
    • /
    • pp.92-99
    • /
    • 2021
  • Light-scattering fine particulate matter monitors can measure particulate matter (PM) concentrations in every second and can be designed in a portable size. They can measure the concentrations of various PM sizes (PM1.0, PM2.5, PM4.0 and PM10) with a single sensor. They measure the number and size of particulate matters and convert them to weight per volume (concentration). These devices show a large error for asian dust. This paper proposes a scheme that compensates the PM2.5 concenstration error for asian dust by multiple linear regression machine learning in light-scattering PM monitors. This scheme can be effective with only two or three types of PM sizes. The experimental results compare a beta-ray PM monitor of national institute of environmental research and a light-scattering PM monitor during a month. The correlation coefficient (R2) of theses two devices was 0.927 without asian dust, but it was 0.763 due to asian dust during the entire experimental period and improved to 0.944 by the proposed machine learning.

Composition Variation of Atmospheric Fine Particulate Matters in Accordance with Air Mass Transport Pathways at Background Site of Korea in 2013 (국내 배경지역 대기 미세먼지의 기류 이동경로별 조성변화: 2013년 측정)

  • Ko, Hee-Jung;Lim, Eunha;Song, Jung-Min;Kim, Won-Hyung;Kang, Chang-Hee;Lee, Haeyoung;Lee, Chulkyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.15-27
    • /
    • 2015
  • The collection of fine particulate matter samples was made at Gosan site of Jeju Island, one of the background sites of Korea, during a year of 2013, and their water-soluble ionic species were analyzed in order to examine the chemical compositions and pollution characteristics. The concentrations of $nss-SO_4{^{2-}}$, $NH_4{^{+}}$, $NO_3{^{-}}$, and $K^+$ had occupied 66.0% of water-soluble ionic species in $PM_{10}$, especially 94.3% in $PM_{2.5}$ fine mode, however the $nss-Ca^{2+}$ and $Na^+$ showed high concentrations in $PM_{10-2.5}$ coarse mode. $NO_3{^-}/nss-SO_4{^{2-}}$ concentration ratios in $PM_{10}$ and $PM_{10-2.5}$ were 0.30 and 0.13, showing less significant effect from automobile and local pollution sources. The sulfate and nitrate compounds were presumed to be long-range transported to Gosan area by the relatively high SOR and NOR values. The trajectory cluster analysis showed the higher concentrations of the major secondary pollutants ($nss-SO_4{^{2-}}$, $NO_3{^{-}}$, $NH_4{^{+}}$) and $nss-Ca^{2+}$ when the air masses had moved from China continent and Korean peninsula into Gosan area.

A Study of Size Distribution of Sulfate and Nitrate in Urban Air (都市大氣中 黃酸鹽과 窒酸鹽 關한 硏究)

  • 신상은;김승학;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.33-39
    • /
    • 1986
  • Particulate matter was collected by Andersen Air Sampler in the Seoul area during February-October, 1985, in order to investigate size distribution of sulfate and nitrate in aerosol, and conversion of sulfur dioxide to sulfate and that of nitrogen dioxide to nitrate. The size distribution of sulfate and nitrate had fine mode. The ratio of fine sulfate to total sulfate in aerosol and that of fine nitrate to total nitrate showed between 54.6% and 86%, and 55.7% and 95%, respectively, which presumably originated from gaseous reaction of sulfur dioxide and nitrogen dioxide in the atmosphere.

  • PDF