• 제목/요약/키워드: Fine particulate

검색결과 442건 처리시간 0.026초

충주시 초미세먼지 (PM2.5)의 배출원 기여도 추정에 관한 연구 (Source Apportionment of Fine Particulate Matter (PM2.5) in the Chungju City)

  • 강병욱;이학성
    • 한국대기환경학회지
    • /
    • 제31권5호
    • /
    • pp.437-448
    • /
    • 2015
  • The purpose of this study is to present the source contribution of the fine particles ($PM_{2.5}$) in Chungju area using the CMB (chemical mass balance) method throughout the four seasons in Korea. The Chungju's annual average level of $PM_{2.5}$ was $48.2{\mu}g/m^3$, which exceeded two times higher than standard air quality. Among these particles, the soluble ionic compounds represent 54.2% of fine particle mass. Additionally, the OC concentration in Chungju stayed similar to other domestic cities, while the EC concentration decreased significantly compared to other domestic/international cities. The concentration of sulfur represented the highest composition (8%) among the fine particle compounds. According to the CMB results, the general trend of the $PM_{2.5}$ mass contributors was the following: secondary aerosols (50.5%: ammonium sulfate 26.5% and ammonium nitrate 24.0%) > gasoline vehicle (18.3%) > biomass burning (11.0%) > industrial boiler (6.0%) > diesel vehicles (4.4%). The contribution of the secondary aerosols was the main cause than others. This impact is assumed to be emitted from air pollutants of urban cities or neighbor countries such as China.

충남지역 대기 중 미세입자 오염 현황 (Concentrations of Atmospheric Fine Particles Measured during 2005 in Chungnam, Korea)

  • 오세원
    • 한국대기환경학회지
    • /
    • 제23권1호
    • /
    • pp.132-140
    • /
    • 2007
  • Concentrations of atmospheric fine particles in Chungnam were measured at 7 sampling sites during 2005. The daily average concentrations of PM 10, PM2.5, and PM1 ranged from 14.9 to $136.5{\mu}g/m^3$, 8.2 to $113.2{\mu}g/m^3$, and 5.7 to $107.5{\mu}g/m^3$, respectively, and the highest levels were observed at Yeongi site. The lowest concentrations for the all size fractions of particulate were observed at Taean located at the west end of the peninsula. The daily average PM10 concentrations were below the current National Standard at all sites, while the daily average PM2.5 concentrations frequently exceeded the US Standard at Cheonan, Dangjin, Boryeong, and Yeongi sites. The frequencies of PM2.5 concentrations exceeding the US standard at Cheonan, Dangjin, Boryeong, and Yeongi were 10.8%, 6.7%, 6.7%, and 26.7%, respectively. In addition, $68{\sim}80%$ of PM10 was in the PM2.5 fraction indicating that fine particles were the major component of atmospheric particles in Chungnam.

HEPA Filter를 이용한 미세입자 거동에 관한 연구 (A study on the Behavior of Fine Particle used the HEPA Filer)

  • 김원강
    • 환경위생공학
    • /
    • 제24권3호
    • /
    • pp.16-27
    • /
    • 2009
  • In this paper, I examined the level of fine dust in medical institutions, educational institutions and multi-purposed facilities to grasp the exact state of the present, and decided the level of air-borne particulate(KSM ISO Standard and ISO Standard 14644-1). We compared new proposed cleaner equipped with HEPA Filter with general cleaner and analyzed the rate of removal according to height, air volume and the equipment with the compulsive air intake. Through this comparison, I reached the conclusion as follows: 1. According to the examination, the fine dust of medical institutions, educational institutions and multi-purposed facilities in Kwang Ju is class 9. 2. The filter used in general cleaner on the market is that of HEPA-type, and its removal efficiency for fine particles($0.3{\sim}0.5{\mu}m$) is very low. 3. In the removal efficiency of new proposed cleaner equipped with HEPA Filter, the higher it is, the better, especially more than 180cm in height. 4. In case it is operated for 5 minutes under the condition of the space of $9.4m^{3}$ and the maximum air volume equipped with two induction pipes, we can keep the air cleanness level of 5 ~ 6. 5. To maintain the air cleanness for a long time, if we first operate for 5 minutes at maximum air volume and then operate at medium maximum air volume, we can keep the air cleanness with low energy.

Development of a PM Sampler for Collecting Fine Particles via Condensation Magnification

  • Kim, D.S.;Kang, C.H.;Hong, S.B.;Lee, K.W.;Lee, J.H.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제24권E1호
    • /
    • pp.24-31
    • /
    • 2008
  • In this study, a new PM (particulate matter) sampler was developed and fabricated to collect fine particles in the atmosphere, and laboratory and field tests were carried out to evaluate the performance of the sampler. The PM sampler, which was based on impingers, employed an aerosol condensation system as a PM magnifier to improve its collection efficiencies. Sodium chloride, ammonium sulfate and ammonium nitrate aerosols were used as test particles, because these components are rich in ambient aerosols. As a result, it was found that the collection efficiency of the novel PM sampler was very high. Thus, it is believed that the PM sampler is an effective device for sampling fine particles. In addition, it was demonstrated that this work could contribute to the collection or removal of fine particles and be applied to the semicontinuous sampling of ambient aerosols for chemical composition analysis.

18F-FDG PET를 이용한 미세먼지 노출에 따른 쥐(rat)의 뇌 활성도 변화 (Changes in Brain Activity of Rats due to Exposure to Fine Dust Using 18F-FDG PET)

  • 조윤호;조규상;이왕희;최재호
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제45권3호
    • /
    • pp.225-232
    • /
    • 2022
  • Fine dust threatens human health in various forms, depending on the particle size, such as by causing respiratory, cardiovascular, and brain diseases, after entering the body via the lungs. The aim of this study was to correlate fine dust exposure with changes in brain blood flow in Sprague Dawley rats by using micro-positron emission tomography and elucidate the possibility of developing cerebrovascular diseases caused by fine dust. The subjects were exposured to an average fine dust (particulate matter 2.5) of 206.2 ± 7.74 to ten rats four times a day, twice a day for 90 min. Before the experiment, they were maintained at NPO to the maximize the intake of 18F-fluorodeoxy glucose(18F-FDG) and minimize changes in the 18F-FDG biomass depending on the ambient environment and body temperature of the rats. PET images were acquired in the list mode 40 min after injecting 18F-FDG 44.4 MBq into the rats tail vein using a micro-PET scanner pre and post exposure to fine dust. We found that the whole brain level of 18F-FDG standardized uptake value in rats averaged 5.21 ± 0.52 g/mL pre and 4.22 ± 0.48 g/mL post exposure to fine dust, resulting in a statistically significant difference. Fine dust was able to alter brain activity after entering the body via the lungs in various forms depending on the particle size.

농업지역(밭) 암모니아 등 대기오염물질 계절별 모니터링 연구 (Study on the Emission Characteristics of Air Pollutants from Agricultural Area)

  • 김민욱;김진호;김경식;홍성창
    • 한국환경농학회지
    • /
    • 제40권3호
    • /
    • pp.211-218
    • /
    • 2021
  • BACKGROUND: Fine particulate matter (PM2.5) is produced by chemical reactions between various precursors. PM2.5 has been found to create greater human risk than particulate matter (PM10), with diameters that are generally 10 micrometers and smaller. Ammonia (NH3) and nitrogen oxides (NOx) are the sources of secondary generation of PM2.5. These substances generate PM2.5 through some chemical reactions in the atmosphere. Through chemical reactions in the atmosphere, NH3 generates PM2.5. It is the causative agent of PM2.5. In 2017 the annual ammonia emission recorded from the agricultural sector was 244,335 tons, which accounted for about 79.3% of the total ammonia emission in Korea in that year. To address this issue, the agricultural sector announced the inclusion of reducing fine particulate matter and ammonia emissions by 30% in its targets for the year 2022. This may be achieved through analyses of its emission characteristics by monitoring the PM2.5 and NH3. METHODS AND RESULTS: In this study, the PM2.5 concentration was measured real-time (every 1 hour) by using beta radiation from the particle dust measuring device (Spirant BAM). NH3 concentration was analyzed real-time by Cavity Ring-Down Spectroscopy (CRDS). The concentrations of ozone (O3) and nitrogen dioxide (NO2) were continuously measured and analyzed for the masses collected on filter papers by ultraviolet photometry and chemiluminescence. CONCLUSION: This study established air pollutant monitoring system in agricultural areas to analyze the NH3 emission characteristics. The amount of PM2.5 and NH3 emission in agriculture was measured. Scientific evidence in agricultural areas was obtained by identifying the emission concentration and characteristics per season (monthly) and per hour.

수도권 환경계획을 위한 초미세먼지 농도의 공간 군집특성과 고농도지역 분석 (Spatial clustering of PM2.5 concentration and their characteristics in the Seoul Metropolitan Area for regional environmental planning)

  • 임철희;박득희
    • 한국환경복원기술학회지
    • /
    • 제25권1호
    • /
    • pp.41-55
    • /
    • 2022
  • Social interest in the fine particulate matter has increased significantly since the 2010s, and various efforts have been made to reduce it through environmental plans and policies. To support such environmental planning, in this study, spatial cluster characteristics of fine particulate matter (PM2.5) concentrations were analyzed in the metropolitan area to identify high-risk areas spatially, and the correlation with local environmental characteristics was also confirmed. The PM2.5 concentration for the recent 5 years (2016-2020) was targeted, and representative spatial statistical methods Getis-Ord Gi* and Local Moran's I were applied. As a result of the analysis, the cluster form was different in Getis-Ord Gi* and Local Moran's I, but they show high similarity in direction, therefore complementary results could be obtained. In the high concentration period, the hotspot concentration of the Getis-Ord Gi* method increased, but in Local Moran's I, the HH region, the high concentration cluster, showed a decreasing trend. Hotspots of the Getis-Ord Gi* technique were prominent in the Pyeongtaek-Hwaseong and Yeoju-Icheon regions, and the HH cluster of Local Moran's I was located in the southwest, and the LL cluster was located in the northeast. As in the case of the metropolitan area, in the results of Seoul, there was a phenomenon of division between the northeast and southwest regions. The PM2.5 concentration showed a high correlation with the elevation, vegetation greenness and the industrial area ratio. During the high concentration period, the relation with vegetation greenness increased, and the elevation and industrial area ratio increased in the case of the annual average. This suggests that the function of vegetation can be maximized at a high concentration period, and the influence of topography and industrial areas is large on average. This characteristic was also confirmed in the basic statistics for each major cluster. The spatial clustering characteristics of PM2.5 can be considered in the national land and environmental plan at the metropolitan level. In particular, it will be effective to utilize the clustering characteristics based on the annual average concentration, which contributes to domestic emissions.

대기(大氣) 중 Benzopyrene 및 중금속(重金屬)의 농도(濃度)와 입경분포(粒徑分布) (Atmospheric Concentration and Size Distribution of Airborne Particulates, Benzopyrene and Heavy Metals)

  • 허문영;권창호;유기선;최성규;권창호;김경호;손동헌
    • 약학회지
    • /
    • 제34권1호
    • /
    • pp.1-10
    • /
    • 1990
  • Total suspended particulate (TSP) in the atmosphere was collected and size-fractionated by Andersen high volume air sampler for the past two years (Mar. 1987-Feb. 1989) in Seoul. The concentrations of several polycyclic aromatic hydrocarbons and heavy metals were determined to investigate the atmospheric concentrations, seasonal variations and its relationship with the size distribution of suspended particulate matter. The arithmetic mean concentration of total suspended particulate was $229.48\;{\mu}g/m^3$. The concentrations of heavy metals were $2971.94\;ng/m^3$ for Fe, $767.75\;ng/m^3$ for Zn, $765.80\;ng/m^3$ for Pb, $218.40\;ng/m^3$ for Cu, $129.91\;ng/m^3$ for Mn, respectively. And the concentration of PAHs were $3.23\;ng/m^3$ for benzo(a)pyrene, $2.71\;ng/m^3$ for benzo(k)fluoranthene, $4.53\;ng/m^3$ for benzo(ghi)perylene, respectively. The mass-size distribution of TSP was lowest in the particle size range $1.1-3.3\;{\mu}m$ increased as the particle size increased or decreased. But PAHs, Pb and Zn abounded in particles below $2.0\;{\mu}m$, while Fe and Mn abouned in particles above $2.0\;{\mu}m$. TSP and its chemical compositions showed the seasonal variations. The concentrations of anthrophogenic origin like TSP, PAH and heavy metals in the fine particles were highest in winter and lowest in summer. PAH and Ph analyzed showed significant correlations with each other and with TSP concentration in fine particles, indicating that the particles in which they are contained have a similar behavior in the atmosphere.

  • PDF

가시광통신 기반 광역 실내 초미세먼지 모니터링 시스템 (Visible Light Communication Based Wide Range Indoor Fine Particulate Matter Monitoring System)

  • 세잔 모하마드 아브라르 샤킬;안진영;한대현;정완영
    • 융합신호처리학회논문지
    • /
    • 제20권1호
    • /
    • pp.16-23
    • /
    • 2019
  • PM 2.5로 불리는 초미세먼지는 인간의 건강을 해치는 2.5 ㎛ 이하 직경의 입자크기를 갖는 공기 중의 미세먼지를 말하며, 미세먼지 집중도는 공기 질 정보로 사용할 수 있다. 사람은 일반적으로 90% 이상을 실내에서 거주하며 실내에 대한 공식적인 먼지 집중도 자료는 제공되지 않기 때문에, 본 연구는 실내의 관점에서 공기 질 측정에 초점을 두었다. 실내 먼지데이터 모니터링은 병원과 같은 환경에서 매우 중요할 뿐만 아니라 교실, 시멘트 공장, 컴퓨터 서버 룸, 석유화학 저장고 등의 장소에서도 유용하게 사용할 수 있다. 본 논문에서는 전자기파로부터 자유로운 실내 먼지 모니터링을 위해 맨체스터 코딩기법을 이용한 가시광 통신 시스템을 제안한다. 넓은 범위의 먼지 집중도를 포함한 중요한 실내 환경정보가 가시광 채널을 통해 전송된다. 강력한 주변광 및 저주파 잡음 제거를 위해 평균전압트레킹 기법을 사용한다. 입력광은 광다이오드에 의해 수신되고, 동시에 수신 마이크로콘트롤러에 의해 신호처리 한다. 사용자는 실시간으로 실내 공기 질 정보를 모니터링 할 수 있으며, 공기 질 정보에 따라 미리 적합한 대처를 할 수 있다.

Characterization of Forest Fire Emissions and Their Possible Toxicological Impacts on Human Health

  • Kibet, Joshua;Bosire, Josephate;Kinyanjui, Thomas;Lang'at, Moses;Rono, Nicholas
    • Journal of Forest and Environmental Science
    • /
    • 제33권2호
    • /
    • pp.113-121
    • /
    • 2017
  • In flight particulate matter particularly emissions generated by incomplete combustion processes has become a subject of global concern due to the health problems and environmental impacts associated with them. This has compelled most countries to set standards for coarse and fine particles due to their conspicuous impacts on environment and public health. This contribution therefore explores forest fire emissions and how its particulates affects air quality, damage to vegetation, water bodies and biological functions as architects for lung diseases and other degenerative illnesses such as oxidative stress and aging. Soot was collected from simulated forest fire using a clean glass surface and carefully transferred into amber vials for analysis. Volatile components of soot were collected over 10 mL dichloromethane and analyzed using a QTOF Premier-Water Corp Liquid Chromatography hyphenated to a mass selective detector (MSD), and Gas Chromatograph coupled to a mass spectrometer (GC-MS). To characterize the size and surface morphology of soot, a scanning electron microscope (SEM) was used. The characterization of molecular volatiles from simulated forest fire emissions revealed long chain compounds including octadec-9-enoic acid, octadec-6-enoic acid, cyclotetracosane, cyclotetradecane, and a few aromatic hydrocarbons (benzene and naphthalene). Special classes of organics (dibenzo-p-dioxin and 2H-benzopyran) were also detected as minor products. Dibenzo-p-dioxin for instance in chlorinated form is one of the deadliest environmental organic toxins. The average particulate size of emissions using SEM was found to be $11.51{\pm}4.91{\mu}m$. This study has shown that most of the emissions from simulated forest fire fall within $PM_{10}$ particulate size. The molecular by-products of forest fire and particulate emissions may be toxic to both human and natural ecosystems, and are possible precursors for various respiratory ailments and cancers. The burning of a forest by natural disasters or man-made fires results in the destruction of natural habitats and serious air pollution.