• Title/Summary/Keyword: Fine particle flotation

Search Result 13, Processing Time 0.017 seconds

Agglomeration of fine anthracite using oil and modified styrene (Oil과 Modified Styrene을 사용(使用)한 미립(微粒) 무연탄(無煙炭)의 응집(凝集))

  • Lee, Jae-Jang;Jang, Dong-Sung
    • Journal of Industrial Technology
    • /
    • v.7
    • /
    • pp.27-47
    • /
    • 1987
  • Fine anthracite is very difficult to upgrade by conventional processes such as gravity concentration or froth flotation, because large quantities of fine coals are generated at the mining and preparation stages and a significant portion of these fine coals are mixed with gangue minerals. This study, therefore, was carried out for the purpose of improving recovery of low ash clean coal, effective beneficiation of low-grade coking coal and removal of sulphur from high-sulphur coals by employing the method of selective agglomeration using oil or polystrene flocculants, for coals which are generally hydrophobic in nature will be extracted by using flocculants. Studies were performed by varying solid concentration, concetration of bridging liquid, mixing speed and mixing time, balling speed and balling time, dispersant dosage, flocculant dosage, pulp pH, and particle size. The results were : when the methods of the oil agglomeration and selective flocculation were employ(in the two process the sample was ground to the size of -74 micron), 1) ash content of the agglomerated coal was 9.85, 7.83%, 2) combustibel recovery of it was 98.5%, 93.5%, respectively. It was observed in selective flocculation that polystyrene is an effective flocculant for coal, De-entrapment of shale from the concentrate flocculated by mechanical agitation was necessary for substantional reductions in final ash content.

  • PDF

Fine Particle Classification and Dewatering of Tailing Using Hydrocyclone (습식사이클론을 이용한 광물찌꺼기의 정밀분급과 탈수)

  • Kim, Jonggeol;Yoo, Kyoungkeun;Choe, Hongil;Choi, Uikyu;Park, Jayhyun;Alorro, Richard Diaz
    • Resources Recycling
    • /
    • v.24 no.4
    • /
    • pp.56-60
    • /
    • 2015
  • Fine particle classification was performed using products obtained from primary classification process after flotation for efficient application of tailing. The cut size increased with decreasing input pressure from 0.1 MPa to 0.3 MPa and increasing pulp density from 5% to 15% using 2-inch hydrocyclone. The median sizes of overflow and underflow were $6.56{\mu}m$ and $55.45{\mu}m$, respectively at 0.3 MPa with 5% pulp density. The imperfection became closed to ideal separation with increasing the pulp density and decreasing the input pressure. The water content decreased with increasing the pulp density, but the effect of input pressure could be ignored. The water content of underflow was 27.9% at 0.3 MPa with 15% pulp density.

Remediation of Sediments using Micro-bubble (미세기포를 이용한 퇴적물 정화)

  • Kang, Sang Yul;Kim, Hyoung Jun;Kim, Tschung Il;Park, Hyun Ju;Na, Choon Ki;Han, Moo Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.420-427
    • /
    • 2016
  • This study was conducted on the sediment remediation using micro-bubble to remove fine particles. For this study, characteristics of contamination and release in sediment were analyzed. And then, the characteristics of bubbles on removal efficiency was investigated at various operation conditions. In particle size distribution of the sediment used for the study, the proportion of clay and silt (<0.075 mm) was about 7.7%, sand (0.075~4.75 mm) was about 67.8%, and gravel (${\geq}4.75$) was 24.5%. Total nitrogen (TN) and total phosphorus (TP) of the sediment were 2,790~3,260, 261~311 mg/kg respectively. Ignition loss and water content were 4.1~9.6, 32.9~53.2% respectively. In analysis of removal efficiency according to operation conditions of micro-bubble, it was the highest when operation condition is pressure 6 atm, pressurized water ratio 30%, and coagulant dosage 15 ppm. At the time, the sediment's removal efficiency was 19.9%. Accordingly removal efficiency of TN and TP were 21.4, 22.6% respectively. Finally a research was found that fine particles in sediment were almost removed by micro-bubble, which led to decrease nutrients' release at about 20.1~64.3% in comparison to sediment including lots of fine particles.