• Title/Summary/Keyword: Fine motion

Search Result 195, Processing Time 0.024 seconds

Decentralized Adaptive Control Scheme for Magnetically Levitated Fine Manipulators (자기부상식 미세구동기의 비집중 적응제어기법)

  • Shin, Eun-Joo;Song, Tae-Seung;Ryu, Joon;Choi, Kee-Bong
    • Journal of IKEEE
    • /
    • v.3 no.2 s.5
    • /
    • pp.250-258
    • /
    • 1999
  • This paper presents a decentralized adaptive controller design for a Magnetically Levitated Fine Manipulator to follow the given trajectory as close as possible in spite of coupling effects between motion axes(degree of freedoms or subsystems). The present controller consists of two parts: the model reference controls based on known subsystems and the local adaptive controls. The former stabilizes the motion of the manipulator so as to follow that of the reference model. The latter reduces tracking errors due to coupling disturbances by adjusting the local gains to such levels that override interactions and assure the stability of the overall system. Through several experimental results, it has been shown that the decentralized adaptive control scheme has better tracking performances comparing to the PID controller case as well as good disturbance(coupling) rejection property.

  • PDF

Development of Motion Recognition and Real-time Positioning Technology for Radiotherapy Patients Using Depth Camera and YOLOAddSeg Algorithm (뎁스카메라와 YOLOAddSeg 알고리즘을 이용한 방사선치료환자 미세동작인식 및 실시간 위치보정기술 개발)

  • Ki Yong Park;Gyu Ha Ryu
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • The development of AI systems for radiation therapy is important to improve the accuracy, effectiveness, and safety of cancer treatment. The current system has the disadvantage of monitoring patients using CCTV, which can cause errors and mistakes in the treatment process, which can lead to misalignment of radiation. Developed the PMRP system, an AI automation system that uses depth cameras to measure patient's fine movements, segment patient's body into parts, align Z values of depth cameras with Z values, and transmit measured feedback to positioning devices in real time, monitoring errors and treatments. The need for such a system began because the CCTV visual monitoring system could not detect fine movements, Z-direction movements, and body part movements, hindering improvement of radiation therapy performance and increasing the risk of side effects in normal tissues. This study could provide the development of a field of radiotherapy that lags in many parts of the world, along with the economic and social importance of developing an independent platform for radiotherapy devices. This study verified its effectiveness and efficiency with data through phantom experiments, and future studies aim to help improve treatment performance by improving the posture correction mechanism and correcting left and right up and down movements in real time.

270 MHz Full HD H.264/AVC High Profile Encoder with Shared Multibank Memory-Based Fast Motion Estimation

  • Lee, Suk-Ho;Park, Seong-Mo;Park, Jong-Won
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.784-794
    • /
    • 2009
  • We present a full HD (1080p) H.264/AVC High Profile hardware encoder based on fast motion estimation (ME). Most processing cycles are occupied with ME and use external memory access to fetch samples, which degrades the performance of the encoder. A novel approach to fast ME which uses shared multibank memory can solve these problems. The proposed pixel subsampling ME algorithm is suitable for fast motion vector searches for high-quality resolution images. The proposed algorithm achieves an 87.5% reduction of computational complexity compared with the full search algorithm in the JM reference software, while sustaining the video quality without any conspicuous PSNR loss. The usage amount of shared multibank memory between the coarse ME and fine ME blocks is 93.6%, which saves external memory access cycles and speeds up ME. It is feasible to perform the algorithm at a 270 MHz clock speed for 30 frame/s real-time full HD encoding. Its total gate count is 872k, and internal SRAM size is 41.8 kB.

Study on the Fabrication of Porous Uranium Oxide Granule Using a Rotary Voloxidizer (회전형 휘발성 산화장치 이용 다공성 우라늄산화물 그래뉼 제조 연구)

  • Lee, Jae-Won;Yun, Yeo-Wan;Shin, Jin-Myeong;Lee, Jung-Won;Park, Guen-IL;Park, Jang-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.642-647
    • /
    • 2011
  • The fabrication characteristics of porous uranium oxide granules from $U_3O_8$ powder was investigated in terms of initial particle bed motions such as slumping and rolling, thermal treatment conditions, and rotational velocities in slumping motion using a rotary voloxidizer. With respect to the initial particle bed motion the recovery rate of granule of above 1 mm in slumping motion was higher than that in the rolling motion. Rolling motion was changed into slumping motion with high slumping frequency by formation of granules from fine particles. Recovery rate of granule significantly increased with the increas in thermal treatment temperature and time of upto 10 h. As the rotational velocity of voloxidizer in the case of the initial particle bed showing slumping motion increased, the recovery rate of granule increased from 81.5 to 88.7%. However, the rotational velocity of 2 rpm provided an effective density, crushing strength and sphericity of granules.

A Study on the Fine Dust Removal Equipment of Pressurized Water type for the Removal of Exhaust Gas Fine Dust and Volatile Organic Compounds from the Non-industrial combustion plant (비산업 연소 사업장 배출 가스상 미세먼지와 휘발성 유기 화합물 제거를 위한 가압수식 미세먼지 제거 장치 연구)

  • Youn, Jae-Seo;Kim, Sang-Min;Lee, Ye-Ji;Noh, Seong-Yeo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.506-512
    • /
    • 2018
  • The fine dust generated in the home and restaurant business occupies a low ratio of about 4% of the total fine dust emissions. However, at the foodservice business, the rate of change of the pollutant concentration is very high, so that the temporary fine dust concentration can be measured up to 60 times. The pollutants generated from non-industrial combustion plants consist of particulate fine dust and gaseous organic compounds. To remove these pollutants, cleaning dust collection system, which is an effective system for simultaneous removal of gaseous and particulate matter, is applied. This is a method of increasing the probability of diffusion capture of the Brownian motion by pressurized liquid injection method using the atomizing nozzle. The dust removal efficiency of the fine dust collecting system was analyzed by nozzle spraying air pressure condition and angle using the manufactured fine dust removing system. As a result, it was confirmed that the efficiency of removal of fine dust and gaseous organic compounds was more than 90%. The developed system is expected to be highly usable in the future because it can remove particulate dust from the existing plant hood system without any installation cost.

Optimal Design of a Fine Actuator for Optical Pick-up (광픽업 미세구동부의 최적설계)

  • Lee, Moon-G;Gweon, Dae-Gab
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.819-827
    • /
    • 1997
  • In this paper, a new modeling of a fine actuator for an optical pick-up has been proposed and multiobjective optimization of the actuator has been performed. The fine actuator is constituted of the bobbin which is supported by wire suspension, the coils which wind around the bobbin, and the magnets which cause the magnetic flux. If current flows in the coils, magnetic force is so produced as to be balanced with spring force of wire, so the bobbin is pisitioned. In this model the transfer function from input voltage to output displacementof bobbin has been obtained so that we can describe this integrated system with electromagnetic and mechanical parts. Wire suspension is regarded as a continuous Euler beam, damper as distributed viscous damping, and bobbin as a rigid body which can move up- and down- ward motion only. According to the model, the high frequency dynamic characteristics of the fine actuator can be known and the effect of damping can be investigated while the conventional second order model cannot. In multiobjective optimization, two objective functions have been chosen to maximize the fundamental frequency and the sensitivity with respect to the input voltage of the actuator so that Pareto's optimal solutions have been obtained using .epsilon.-constraint method. These objective functions will satisfy the trends which will enhance the access speed and reduce the tracking error in the optical pick-up technology of next generation. In the result of optimization, we obtain the designs of the optical pick-up fine actuator which has high speed, high sensitivity and low resonant peak. Furthermore, we offer the relation between two object functions so that the designer can make easy choice.

Low-Temperature Superplastic Deformation Behavior of Fine-Grained Ti-6Al-2Sn-4Zr-2Mo-0.1Si Alloy (미세 결정립 Ti-6Al-2Sn-4Zr-2Mo-0.1Si 합금의 저온 초소성 변형 거동)

  • Park, C.H.;Lee, B.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.544-549
    • /
    • 2009
  • This study aimed to elucidate the deformation mechanism during low-temperature superplasticity of fine-grained Ti-6Al-2Sn-4Zr-2Mo-0.1Si alloy in the context of constitutive equation. For this purpose, initial coarse equiaxed microstructure was refined to $2.2{\mu}m$ via dynamic globularization. Globularized microstructure exhibited large superplastic elongations(434-826%) at temperatures of $650-750^{\circ}C$ and strain rate of $10^{-4}s^{-1}$. It was found that the main deformation mechanism of fine-grained material was grain boundary sliding accommodated by dislocation motion with both stress exponent (n) and grain size exponent (p) values of 2. When the alpha grain size, not sub-grain size, was considered to be an effective grain size, the apparent activation energy for low-temperature superplasticity of the present alloy(169kJ/mol) was closed to that of Ti-6Al-4V alloy(160kJ/mol).

Aesthetic Characteristics of 'Movement' Expressed in Modern Fashion (현대 패션에 표현된 움직임의 미적 특성에 관한 연구)

  • Park, Eun-Kyung
    • Journal of the Korean Society of Costume
    • /
    • v.55 no.8 s.99
    • /
    • pp.112-126
    • /
    • 2005
  • The purpose of this study is to analyze the aesthetic characteristics of 'movement' expression in modern fashion(1910-2004) based on a study of modern fine arts which adopted 'movement' element in their work. In this study the meaning of movement was defined as motion, changing position and transformation. Literature survey through books and research papers and demonstrative study with fashion collection photos were undertaken. The results wert as follows ; 1) Kinetic art, optical an, light kinetic art and technology art such as video and computer art have adopted 'movement' element in their work. 2) The plasticities of 'movement' fine arts were identified as mutual penetration, increase of visibility, use of non-traditional materials and dynamism. The internal meanings were identified as expansion of aesthetic experience and the concept of fine art, optimistic attitude on technology, spectator participation and integration of art and life. 3) The 'movement' expression in modern fashion was distinctively found in 1910s-20s(avant-garde fashion), 1960s (kinetic and optical art fashion) and mid 1990s to 2004 (techno-cyber fashion). 4) The plasticities of the 'movement' expression in modern fashion were identified as non-definition, use of non-traditional materials, dynamism. The internal meanings were identified as expansion of aesthetic experience and the concept of dress, optimistic attitude on technology, playfulness through participation. In conclusion, the expression of 'movement' in modern fashion has optimistic viewpoint on the development of modern society and is one of the interesting design points which will be pursued in the fellowing years.

Adaptive Detection of a Moving Target Undergoing Illumination Changes against a Dynamic Background

  • Lu, Mu;Gao, Yang;Zhu, Ming
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.745-751
    • /
    • 2016
  • A detection algorithm, based on the combined local-global (CLG) optical-flow model and Gaussian pyramid for a moving target appearing against a dynamic background, can compensate for the inadaptability of the classic Horn-Schunck algorithm to illumination changes and reduce the number of needed calculations. Incorporating the hypothesis of gradient conservation into the traditional CLG optical-flow model and combining structure and texture decomposition enable this algorithm to minimize the impact of illumination changes on optical-flow estimates. Further, calculating optical-flow with the Gaussian pyramid by layers and computing optical-flow at other points using an optical-flow iterative with higher gray-level points together reduce the number of calculations required to improve detection efficiency. Finally, this proposed method achieves the detection of a moving target against a dynamic background, according to the background motion vector determined by the displacement and magnitude of the optical-flow. Simulation results indicate that this algorithm, in comparison to the traditional Horn-Schunck optical-flow algorithm, accurately detects a moving target undergoing illumination changes against a dynamic background and simultaneously demonstrates a significant reduction in the number of computations needed to improve detection efficiency.

Image quality assessments of focal spot size on radiographic images in dogs

  • Park, Sujin;Hwang, Tae Sung;Lee, Hee Chun
    • Korean Journal of Veterinary Research
    • /
    • v.62 no.1
    • /
    • pp.8.1-8.6
    • /
    • 2022
  • The aim of this prospective study was to investigate the effects of focal spot size of X-ray tube on sharpness of clinical radiographic images of dogs and cats. Radiographic images of 24 stifle joints, 15 carpi, 18 lumbar spines, 61 thoraxes, and 47 abdomens of 102 dogs and 4 cats were obtained in the present study, using 2 X-ray tubes with nominal focal spots of 2.0 mm and 0.6 mm, respectively. The sharpness of specific anatomical structures in all the images of 5 projections was assessed. The radiographic sharpness of various anatomical structures of lumbar spine and cortex of stifle with fine focal spot was increased significantly compared with broad focal spot images. In addition, the blurred motion was significantly higher in the fine focal spot images of thorax. In conclusion, our study suggests that a selective use of fine foci for imaging of lumbar spine or cortex of stifle enhanced radiographic sharpness.