• Title/Summary/Keyword: Fine migration

Search Result 62, Processing Time 0.016 seconds

Identifying Distribution Areas and Population Sizes for the Conservation of the Endangered Species Odontobutis obscura (멸종위기종 남방동사리의 보전을 위한 상세 분포 지역 및 개체군 크기 파악)

  • Jeong-Hui Kim;Sang-Hyeon Park;Seung-Ho Baek;Chung-Yeol Baek
    • Korean Journal of Ecology and Environment
    • /
    • v.57 no.2
    • /
    • pp.102-110
    • /
    • 2024
  • This study presents a fine scale distribution of the endangered species, Odontobutis obscura, through field surveys and literature reviews. Using the mark-recapture method, the population size in major habitats was determined. Field surveys conducted on 18 streams in Geoje Island revealed that the O. obscura was only found in the main streams and tributaries of the Sanyang, Gucheon, and Buchun Streams, which are part of the Sanyang Stream watershed. The O. obscura exhibited relative abundances ranging from 0.5% to 35.3% at different locations, with certain spots showing higher relative abundances (18.8% to 35.3%), indicating major habitat areas. A review of six literature studies confirmed the presence of the O. obscura, although there were differences in occurrence status depending on the purpose, scope, and duration of the studies. Combining the results of field and literature surveys, it was found that the O. obscura inhabits the main and tributary streams of the Sanyang, Gucheon, and Buchun Streams, from the upper to lower reaches. Currently, the O. obscura population in the Sanyang Stream watershed maintains a stable habitat, but its limited distribution range suggests potential issues such as genetic diversity deficiency in the long term. The population size of the O. obscura was confirmed at two specific locations, with densities of 0.5 to 1.5 individuals per m2. The average movement distance from the release point was 13.1 m, indicating the limited mobility characteristic of ambush predators. Understanding the distribution and population size of endangered species is the first step towards their conservation and protection. Based on this information, further research could significantly contribute to the conservation of the O. obscura.

Seasonal Morphodynamic Changes of Multiple Sand Bars in Sinduri Macrotidal Beach, Taean, Chungnam (충남 태안군 신두리 대조차 해빈에 나타나는 다중사주의 계절별 지형변화 특성)

  • Tae Soo Chang;Young Yun Lee;Hyun Ho Yoon;Kideok Do
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.203-213
    • /
    • 2024
  • This study aimed to investigate the seasonal patterns of multiple bar formation in summer and flattening in winter on the macrotidal Sinduri beach in Taean, and to understand the processes their formation and subsequent flattening. Beach profiling has been conducted regularly over the last four years using a VRS-GPS system. Surface sediment samples were collected seasonally along the transectline, and grain size analyses were performed. Tidal current data were acquired using a TIDOS current observation system during both winter and summer. The Sinduri macrotidal beach consists of two geomorphic units: an upper high-gradient beach face and a lower gentler sloped intertidal zone. High berms and beach cusps did not develop on this beach face. The approximately 400-m-wide intertidal zone comprises distinct 2-5 lines of multiple bars. Mean grain sizes of sand bars range from 2.0 to 2.75 phi, corresponding to fine sands. Mean sizes show shoreward coarsening trend. Regular beach-profiling survey revealed that the summer profile has a multi-barred morphology with a maximum of five bar lines, whereas, the winter profile has a non-barred, flat morphology. The non-barred winter profiles likely result from flattening by scour-and-fill processes during winter. The growth of multiple bars in summer is interpreted to be formed by a break-point mechanism associated with moderate waves and the translation of tide levels, rather than the standing wave hypothesis, which is stationary at high tide. The break-point hypothesis for multi-bars is supported by the presence of the largest bar at mean sea-level, shorter bar spacing toward the shore, irregular bar spacing, strong asymmetry of bars, and the 10-30 m shoreward migration of multi-bars.