• Title/Summary/Keyword: Fine microstructure

Search Result 738, Processing Time 0.025 seconds

Study on the Microstructure of the Hydroxyapatite Injected into the Hole of Teeth. (치아 내 수산화아파타이트(HAp) 삽입 후 미세구조에 관한 연구)

  • Ryu Su Chak
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.786-789
    • /
    • 2004
  • Hydroxyapatite powder was injected into thehole of teeth. The microstructure of teeth and HAp were observed after immersed in $9\%$ salin solution at $37^{\circ}C$ from 1month to 6 months. The junction morphology of hydroxyapatite and tooth was enhanced and particle size of hydroapatite was decreased with increasing time. The firm waxy body was found due to the hardening of hydroxyapatite fine powder resulting from the destruction of initial powder with swelling. It is suggested that the junction morphology of hydroxyapatite and tooth was observed due to the $Ca^{2+}$ ion shift of hydroxyapatite.

The effect of silicon and manganese on (Modelling FCW 용착금속의 기계적 성질에 미치는 Si, Mn의 영향)

  • 양철웅;강춘식;김경중
    • Journal of Welding and Joining
    • /
    • v.8 no.2
    • /
    • pp.27-39
    • /
    • 1990
  • The effect of silicon and manganese, in the ranges of 0.3% to 1.0wt% Si and 0.7 to 2.6wt%Mn, on the microstructure and mechanical properties of flux cored arc welded deposits have been investigated for the purpose of improving mechanical properties. Microstructure of weld metals was mainly influenced by manganese content, and manganese increased the volum fraction of acicular ferrite and refined the microstructure. Also, tensile properties were governed by manganese content, ultimate tensile strength and yield strength were increased by approximately 82MPa and 58MPa per 1% Mn addition to the deposit. Toughness was improved by increasing Mn content and lowering Si content. Optimal impact properties were obtained at above 1.8wt% Mn and below 0.5wt% Si. Acicular ferrite was predominant factor in improving mechanical properties. Formation of acicular ferrite was promoted by manganese and no direct relationship between AF(acicular ferrite) proportion and oxygen in weld metal was found.

  • PDF

Mechanical Properties and Microstructure of Nano Grain Nickel Alloy Deposit

  • Seo, Moo Hong;Kim, Jung Su;Kim, Seung Ho;Wyi, Jung Il;Hwang, Woon Suk;Jang, Si Sung;Jung, Hyun Kyu;Chun, Byung Sun
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.197-201
    • /
    • 2003
  • In this study, Ni-P layers were electroplated on the surface of stainless steel in order to investigate the effects of an additive and agitation on their mechanical properties and microstructure. The concentration of the additive in the plating solution increased, the pores formed in the layer decreased, while the residual stress developed in the layers during electroplating increased. Agitation of the solution during electroplating was observed to force to increase local pores in the layer, which lowers its tensile properties. Grain growth was suppressed due to very fine $Ni_3P$ precipitates formed at its grain boundaries during heat treatment at $343^{\circ}C$ for 1 hr in air.

Microstructure and Properties of High Strength High Ductility Al-Mg-Zn Casting Alloy (고강도 고인성 Al-Mg-Zn 주조합금의 미세조직 및 특성)

  • Kim, Jeong-Min;Ha, Tae-Hyung
    • Journal of Korea Foundry Society
    • /
    • v.36 no.6
    • /
    • pp.181-186
    • /
    • 2016
  • The typical microstructure of Al-5%Mg-2%Zn cast alloy mainly consists of an aluminum matrix with a small amount of AlMgZn 2nd phase. The secondary dendrite arm spacing and the grain size of the cast alloy tend to be inversely proportional to the section thickness of casting; however, the tensile properties cannot be said to be clearly related to the cast microstructure. After T6 heat treatment, the tensile strength of the alloy was enhanced significantly. TEM analysis results show that very fine AlMgZn precipitates were formed after the heat treatment. The corrosion resistance, measured according to the corrosion potential, was found to increase slightly after the conducting of heat treatment.

Microstructures and Heat-treatment of Sintered Steels Using Iron Powder Coated with 0.45% Phosphorus (0.45%인(P)이 피복된 철분말 소결강의 조직 및 열처리)

  • 정재우
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.27-34
    • /
    • 1994
  • Commercial pure iron powder and iron powder of coated 0.45% phosphorus were mixed with graphite powder in dry mixer to control carbon content from 0 wt% to 0.8 wt%. Mixed powder was pressed in the mould under the pressure of 510 MPa. Compacts were sintered at 118$0^{\circ}C$ for 40 min. in cracked ammonia gaseous atmosphere. Some of these sintered specimens were quenched in oil, and tempered in Ar gas. All of these specimens were investigated for microstructure, density and hardness in relation to coated phosphorus and carbon content. The results obtained were as follows: (1) The microstructure of the sintered speciments revealed that the amount of pearlite was increased with increasing C content but decreased by P-addition. (2) The P-addition affected the microstructure of pores in which the pore shape became round and its mean size was decreased by P-addition. (3) After tempering of sintered specimens the structure of pearlite was changed from fine structure to coarse one in P added specimen. (4) Hardness was higher in P added specimens.

  • PDF

Reheating of Semi-Solid Aluminum Alloys and Mechanical Properties of Thixoforged Product (반용융 알루미늄 합금의 재가열 및 Thixoforging 부품의 기계적 성질)

  • 정홍규;강충길
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.437-448
    • /
    • 1999
  • The reheating of the billet in the semi-solid state as quickly and homogeneously as possible is one of the most imposrtant parts. To obtain a fine globular microstructure in cross section of billet, the optimal design of the induction coil for variation of alloys and specimen sizes is necessary. For the thixo-forging process the construction of the reheating data base is very important, because the reheating conditions are different for variation of SSM and billet sizes. So in this study, the optimal coil design of A356 (ALTHIX) and Aι2024 with d×ι=60×90 (mm) to obtain the globular microstructure is theoretically proposed. The suitability of an optimal coil design will be demonstrated by reheating experiments. Finally, the thixoformability of an arbitrarily shaped product is evaluated by its forming variables. The defects and mechanical properties are also investigated.

  • PDF

Mechanical and Electrical Properties of Submicrocrystalline Cu-3%Ag Alloy (초미세 결정립 Cu-3%Ag 합금의 기계적/전기적 특성)

  • Ko, Y.G.;Lee, C.W.;NamGung, S.;Lee, D.H.;Shin, D.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.476-481
    • /
    • 2009
  • The present work demonstrates the mechanical and electrical responses of submicrocrystalline Cu-3%Ag alloy as a function of strain imposed by equal channel angular pressing(ECAP). From transmission electron microscope observation, the resulting microstructures of Cu-3%Ag alloy deformed by ECAP for 8-pass or more consist of reasonably fine, equiaxed grains without having a strong preferred orientation, suggesting that microstructure evolution is slower than that of pure-Al and its alloys owing to low stacking fault energy. The results of room temperature tension tests reveal that, as the amount of applied strain increases, the tensile strength of submicrocrystalline Cu-3%Ag alloy increases whereas losing both the ductility and the electrical conductivity. Such phenomenon can be explained based on microstructure featured by the non-equilibrium grain boundaries.

Effect of Grain Boundary Modification on the Microstructure and Magnetic Properties of HDDR-treated Nd-Fe-B Powders

  • Liu, Shu;Kang, Nam-Hyun;Yu, Ji-Hun;Kwon, Hae-Woong;Lee, Jung-Goo
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • The microstructure and magnetic properties of HDDR-treated powders after grain boundary diffusion process (GBDP) with Nd-Cu alloy at different temperatures have been studied. The variation of GBDP temperature had multifaceted influences on the HDDR-treated powders involving the microstructure, phase composition and magnetic performance. An enhanced coercivity of 16.9 kOe was obtained after GBDP at $700^{\circ}C$, due to the modified grain boundary with fine and continuous Nd-rich phase. However, GBDP at lower or higher temperature resulted in poor magnetic properties because of insufficient microstructural modification. Especially, the residual hydrogen induced phenomenon during GBDP strongly depended on the GBDP temperature.

The Effects of TiN Particles on the HAZ Microstructure and Toughness in High Nitrogen TiN Steel

  • Jeong, H.C.;An, Y.H.;Choo, W.Y.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.25-28
    • /
    • 2002
  • In the coarse grain HAZ adjacent to the fusion line, most of the TiN particles in conventional Ti added steel are dissolved and austenite grain growth is easily occurred during welding process. To avoid this difficulty, thermal stability of TiN particle is improved by increasing the nitrogen content in steel. In this study, the effect of hlgh nitrogen TiN particle on preventing austenite grain growth in HAZ was investigated. Increased thermal stability of TiN particle is helpful for preventing the austenite grain growth by pinning effect. High nitrogen TiN particle in simulated HAZ were not dissolved even at high temperature such as 1400'E and prevented the austenite grain growth in simulated HAZ. Owing to small austenite grain size in HAZ the width of coarse grain HAZ in high nitrogen TiN steel was decreased to 1/10 of conventional TiN steel. Even high heat input welding, the microstructure of coarse grain HAZ consisted of fine polygonal ferrite and pearlite and toughness of coarse grain HAZ was significantly improved.

  • PDF

Microstructure and Wear Behaviour of Rapidly Solidified Al-20Si-5Fe-zPb(x=2, 4, 6wt.%) Alloys (급속응고 Al-20Si-5Fe-xPb(x=2, 4, 6 wt.%) 합금의 미세조직과 마모거동)

  • 김택수
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.96-102
    • /
    • 1999
  • The effect of Pb addition on microstructure and wear resistance was studied in rapidly solidified Al-20Si-5Fe-xPb(x=2, 4, 6 wt.%) alloys. The R/S Al-20Si-5Fe-xPb (x=2, 4, 6 wt.%) alloys showed a fine and homogeneous microstructure and an improved wear property compared with Al-20Si-5Fe alloy, while no significant change in UTS (Ultimate Tensile Strength) was shown. Contribution of the dispersoids on the wear property was discussed by showing the plastic deformation layers formed during wear track.

  • PDF