• Title/Summary/Keyword: Fine fiber

Search Result 374, Processing Time 0.024 seconds

Fine Structure and Physical Properties of Cotton Fibers and their Fabrics Treated with Liquid Ammonia, NaOH, and NaOH/Liquid Ammonia (액체암모니아, 수산화나트륨, 수산화나트륨/액체암모니아 처리한 면의 미세구조 및 물성)

  • 배소영;이문철;김홍성;이영희;김경환
    • Textile Coloration and Finishing
    • /
    • v.6 no.2
    • /
    • pp.47-54
    • /
    • 1994
  • Cotton fiber, NaOH-mercerized cotton fiber, cotton fabric, and NaOH-mercerized cotton fabric have been treated by liquid ammonia at -33.4$^{\circ}C$. The fine structures, bending properties, tensile strengthes, shrinkages for laundering, and wrinkle recoveries were studied. The treatment of cottons with liquid ammonia brought about the transition of crystal lattice ; transforming cellulose I crystal of original cotton to cellulose I and III crystal, and cellulose II crystal of mercerized cotton to cellulose II and III crystals. The degree of crystallinities were decreased in the order of liquid ammonia>NaOH/liquid ammonia>NaOH-treated cotton. However moisture regain and water absorbency for liquid ammonia-treated cotton were lower than that of NaOH-treated cotton because of a difference in swelling actions of the agents. It seems caused by intermicrofibrillar pores produced in swelling processes. The bending rigidity and bending hysteresis were decreased remarkly by liquid ammonia treatment. Therefore softness and dimensional stability were improved. The liquid amminia and NaOH/liquid ammonia-treated cottons moreover show excellent properties in tensile strength, anti-shrinkage for laundering, and wrinkle recovery.

  • PDF

Influence of coarse aggregate properties on specific fracture energy of steel fiber reinforced self compacting concrete

  • Raja Rajeshwari, B.;Sivakumar, M.V.N.
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.173-181
    • /
    • 2020
  • Fracture properties of concrete depend on the mix proportions of the ingredients, specimen shape and size, type of testing method used for the evaluation of fracture properties. Aggregates play a key role for changes in the fracture behaviour of concrete as they constitute about 60-75 % of the total volume of the concrete. The present study deals with the effect of size and quantity of coarse aggregate on the fracture behaviour of steel fibre reinforced self compacting concrete (SFRSCC). Lower coarse aggregate and higher fine aggregate content in SCC results in the stronger interfacial transition zone and a weaker stiffness of concrete compared to vibrated concrete. As the fracture properties depend on the aggregates quantity and size particularly in SCC, three nominal sizes (20 mm, 16 mm and 12.5 mm) and three coarse to fine aggregate proportions (50-50, 45-55, 40-60) were chosen as parameters. Wedge Split Test (WST), a stable test method was adopted to arrive the requisite properties. Specimens without and with guide notch were investigated. The results are indicative of increase in fracture energy with increase in coarse aggregate size and quantity. The splitting force was maximum for specimens with 12.5 mm size which is associated with a brittle failure in the pre-ultimate stage followed by a ductile failure due to the presence of steel fibres in the post-peak stage.

Change of Chemical Pulp Fiber Properties with Cellulase Component($C_1$, $C_{x}$) Treatment (CelIulase 구성 요소별 처리에 의한 펄프 섬유의 특성 변화)

  • Kim, Byung-Hyon;Jeon, Yang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.2
    • /
    • pp.13-23
    • /
    • 1998
  • Two major cellulase components purified with sephadex G-75 and DEAE sepharose were applied to bleached kraft pulp to inverstigate the change of fiber properties. Cellulose viscosity was very sensitive to $C_x$ component treatment (more than 15% drop was observed) while being little influenced by $C_1$, component (only 2% drop). Fiber fraction longer than 2mm was reduced by $C_x$ treatment while short fiber fraction was increased greatly by more than 15%. There was little change in fiber length distribution by combined treatment of $C_1$ 1 and $C_x$ at equal. In this case, fine contents increased by more than 2.5% at equivalent refining time. WRV and Density were increased as the amount of $C_1$ or $C_x$ treatment was increased. $C_{x}$ was main cause for increasing them. But the effect fell as enzyme dosage.

  • PDF

The Manufacturing of Electromagnetic Shielding Sheet Using the Carbon and Wood Fiber Mixture (탄소와 목재섬유 혼합물을 이용한 전자기파 차폐용 시트의 제조)

  • Kim, Hyoung-Jin;Um, Gi-Jeung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.4 s.117
    • /
    • pp.68-75
    • /
    • 2006
  • Electromagnetic shielding sheet using the carbon and wood fiber mixture was manufactured in an effort to develop an electromagnetic shielding packaging material. Carbon fibers were cut into 5, 10, and 15 mm using the automatic cutting device and blown and dispersed using compression air passed through the fine nozzle. Then carbon fibers were slurried with water (0.1% consistency), and softwood kraft pulp along with cone starch were added. The wet mats were manufactured by dewatering in modified hand-sheet machine. The wet mats were pressed upto $4kgf/cm^2$ in the carbon and wood fiber mixture mat press. The wet mats were dried in the automatic controlled plate dryer. Investigation on the formation and surface structure of the newly developed carbon and wood fiber mixture electromagnetic shielding sheet were carried out using the scanning electron microscopy and the image analyzer. Finally electromagnetic shielding characteristics of the newly developed carbon and wood mixture sheet were measured using net-work analyser. The result was promising in the light of the fact that this method could open a new way to substitute the expensive imported electromagnetic shielding sheet.

The surface mounting technology to prevent improper fine chip insertions by using fiber sensors (Fiber sensor를 이용한 미소칩 미삽 방지 표면실장기술)

  • Kim, Young-Min;Kim, Hyun-Jong;Um, Sun-Chon;Kong, Heon-Tag;Kim, Chi-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4138-4146
    • /
    • 2011
  • In surface mount technology, with cellular phones and flat panel displays shrinking in size, the electric goods for making these things are getting smaller as well. Therefore, the technology of mounting components such as 0402 and 0603 Chip is on the rise. The chip mount manufacturing companies have studied the mount technology to prevent the missing insertions or improper insertion. This study suggests arranging the mechanical structure by using fiber sensors to eliminate missing insertions or improper insertions and developing the technology for upgrading system algorithms.

A study of disposable micro dust-mask design for bicycle users (자전거 이용자를 위한 일회용 미세먼지 마스크 디자인 연구)

  • Kwon, Jun Ho
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.571-577
    • /
    • 2018
  • Bicycle riders complain of many inconveniences when wearing glasses, sunglasses and masks. The disposable fine dust mask has been developed to resolve such inconveniences of bicycle riders. The scope of research is limited to the fiber which generates one-time static electricity and the shape of the mask due to the characteristic of fine dust mask. The purpose is to design and make the fine dust mask with a simple production process. The new disposable fine dust mask has secured enough space of the mask in front of the mouth by longitudinal folding and minimized stuffiness by maintaining the shape of the folded part to prevent touching the mouth even by heavy breathing. The streamlined sponge is attached at the part of nose support and the area of the cheek has been expanded to be about 2.5cm wider than ordinary masks to improve tight seal at the side. In addition, a new disposable fine dust scarf mask has been developed to block ultraviolet rays for the face and neck while filtering fine dust with the tight fine dust mask.

A study on the Process Improvement of Papermade Reconstituted Tobacco (제지식 판상엽의 공정 개선 연구)

  • 김영호;한영림;김근수;김대종
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.2
    • /
    • pp.164-169
    • /
    • 2000
  • The reconstituted tobacco leaves(RTL) playa major part in the control of the low density and tar cigarette. Reconstituted tobacco manufactured by the papermaking process has much higher filling power than homogenized tobacco manufactured by slurry and rolling process. Fragile reconstituted tobaccos are liable to lead to small particles detrimental for filling power so they must be properly flexible. This work was conducted to determine the effect of CaCO$_3$ addition in paper-making process on the filling power and the flexibility of the reconstituted tobacco and to obtain the fundamental informations for improving the quality of domestic reconstituted tobacco. We analyzed the wood fiber species, the filler level, the fiber length, the fineness level and observed the surface of the RTL. From the obtained results, we could determine that foreign reconstituted tobacco was manufactured by blending softwood with hardwood and over 8% of calcium carbonate at the addition level. The domestic RTL has much higher fine fiber level by 23.2 % than that of foreign, so the refining treatment process and the condition must be reoptimized for the improvement of RTL quality.

  • PDF

Fabrication of Optical Fiber Preforms for Optical Communication by Centrifuge - Effects of Fine Particle Sizes and Traversing Injection Tube - (원심력을 이용한 광통신용 광섬유 모재제조 - 미세입자 크기 및 이동식 injection tube의 영향 -)

  • Min, Dong-Soo;Kim, Kyo-Seon;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.12
    • /
    • pp.51-59
    • /
    • 1992
  • In this paper, the technique to fabricate the optical fiber preforms by centrifuge was investigated, using silica particles of different sizes. The injection tube was designed to traverse axially so that uniform coaling of tiny silica particles onto the substrate tube can be certified. The deposition efficiencies and deposition rates of $SiO_2$ particles were measured to elucidate the effects of process variables such as rotation speed of rotor, aqueous flow rate, suspension concentration, binder concentration and overflow weir diameter. This study shows dearly the merit of this technique by enhancing abruptly the deposition rates and deposition efficiencies, comparing to the conventional processes for optical fiber preforms.

  • PDF

An Experimental Study on the Durability of SFRC Using Fly Ash (플라이애쉬를 이용한 강섬유보강 콘크리트의 내구성에 관한 실험적 연구)

  • 박승범;오광진;이택우;권혁준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.339-344
    • /
    • 1997
  • During recent years the durability of concrete structures has attracted considerable interest in concrete practice, material research and long-term deformation. To preserve the brittleness of concrete as well as energy absorption and impact resistance, amount of fiber usage has greatly increased year to year in the field of public works. When fly ash, fine powder, mixed into concrete, it condensed the void of concrete structure. Expecially, there's a great effect for strength improvement of concrete by initial pozzolanic reactions. Pozzolan reaction, between cement particle and fly ash, can elaborate the micro structure of matrix. So it was able to improve the effect of fiber reinforced by increased adhesion between cement paste and steel fiber. And so, in this paper, we dealt SFRC for the purpose of efficiently using of industrial by-products and its economical manufacturing. Also we performed the test for durability such as chemical resistance, freeze-thaw resistance and accelerated carbonation of SFRC using fly ash.

  • PDF

A Study on Electrical Resistivity Behaviors of PAN-based Carbon Nanofiber Webs

  • Park, Soo-Jin;Im, Se-Hyuk;Rhee, John-M.;Lee, Young-Seak
    • Carbon letters
    • /
    • v.8 no.1
    • /
    • pp.43-48
    • /
    • 2007
  • The influences of various carbonization temperatures on electrical resistivity and morphologies of polyacrylonitrile (PAN)-based nanofiber webs were studied. The diameter size distribution and morphologies of the nanofiber webs were observed by a scanning electron microscope. The electrical resistivity behaviors of the webs were evaluated by a volume resistivity tester. From the results, the volume resistivity of the carbon webs was ranged from $5.1{\times}10^{-1}\;{\Omega}{\cdot}cm$ to $3.0{\times}10^{-2}\;{\Omega}{\cdot}cm$, and the average diameter of the fiber webs was varied in the range of 310 to 160 nm with increasing the carbonization temperature. These results could be explained that the graphitic region of carbon webs was formed after carbonization at high temperatures. And the amorphous structure of polymeric fiber webs was significantly changed to the graphitic crystalline, resulting in shrinking the size of fiber diameters.