• Title/Summary/Keyword: Fine estimation

Search Result 250, Processing Time 0.021 seconds

An Adaptive Mutiresolution Estimation Considering the Spatial and Spectral Characteristic

  • Kim, Kwang-Yong;Kim, Kyung-Ok
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.999-1002
    • /
    • 2002
  • In this paper, we proposes an adaptive method for reducing the computational overhead of fine-to-coarse MRME at the finest resolution level by considering for the spatial and spectral characteristics between wavelet decomposition levels simultaneously. As we know, there is high correlation between the adjacent blocks and it can give the very important clue to estimate motion at finest level. So, in this paper, using the initial motion vector and the adjacent motion vector in the coarsest level, we determine the optimal direction that will be minimized the estimation error in the finest level. In that direction, we define the potential searching region within the full searching region that is caused to increase much computational overhead in the FtC method. Last, in that region, we process the efficient 2-step motion estimation. and estimate the motion vector at finest resolution level. And then, this determined motion vector is scaled to coarser resolutions. As simulation result, this method is similar to computational complexity of the CtF MRME method and very significantly reduces that of the FtC MRME method. In addition, they provide higher quality than CtF MRME, both visually and quantitatively

  • PDF

Statistical Image Feature Based Block Motion Estimation for Video Sequences (비디오 영상에서 통계적 영상특징에 의한 블록 모션 측정)

  • Bae, Young-Lae;Cho, Dong-Uk;Chun, Byung-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.1
    • /
    • pp.9-13
    • /
    • 2003
  • We propose a block motion estimation algorithm based on a statistical image feature for video sequences. The statistical feature of the reference block is obtained, then applied to select the candidate starting points (SPs) in the regular starting points pattern (SPP) by comparing the statistical feature of reference block with that of blocks which are spread ower regular SPP. The final SPs are obtained by their Mean Absolute Difference(MAD) value among the candidate SPs. Finally, one of conventional fast search algorithms, such as BRGDS, DS, and three-step search (TSS), has been applied to generate the motion vector of reference block using the final SPs as its starting points. The experimental results showed that the starting points from fine SPs were as dose as to the global minimum as we expected.

  • PDF

270 MHz Full HD H.264/AVC High Profile Encoder with Shared Multibank Memory-Based Fast Motion Estimation

  • Lee, Suk-Ho;Park, Seong-Mo;Park, Jong-Won
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.784-794
    • /
    • 2009
  • We present a full HD (1080p) H.264/AVC High Profile hardware encoder based on fast motion estimation (ME). Most processing cycles are occupied with ME and use external memory access to fetch samples, which degrades the performance of the encoder. A novel approach to fast ME which uses shared multibank memory can solve these problems. The proposed pixel subsampling ME algorithm is suitable for fast motion vector searches for high-quality resolution images. The proposed algorithm achieves an 87.5% reduction of computational complexity compared with the full search algorithm in the JM reference software, while sustaining the video quality without any conspicuous PSNR loss. The usage amount of shared multibank memory between the coarse ME and fine ME blocks is 93.6%, which saves external memory access cycles and speeds up ME. It is feasible to perform the algorithm at a 270 MHz clock speed for 30 frame/s real-time full HD encoding. Its total gate count is 872k, and internal SRAM size is 41.8 kB.

Joint Estimation of Phase and Frequency Offsets using a Simple Interpolation of a DFT Algorithm in Burst MPSK Transmission (버스트 MPSK 전송에서 시스템 파라미터들의 동시 추정 성능의 개선을 위한 이산 푸리에 변환의 보간기법)

  • Hong, Dae-Ki;Lee, Yong-Jo;Hong, Dae-Sik;Kang, Chang-Eon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1A
    • /
    • pp.51-57
    • /
    • 2002
  • In this paper, a simple interpolation technique in a frequency domain is proposed for the discrete Fourier transform(DFT) algorithm. Frequency and phase resolution capabilities of the DFT algorithm can be significantly improved by the proposed interpolation technique without increase of a DFT size(the number of points for the DFT). The new technique uses a diving point in amplitude and phase spectrums. As an application, the technique can be used for joint estimation of fine frequency and phase offsets in burst mode digital transmission. Simulation results show that the joint estimator using the technique is robust to estimation errors.

Error estimation for 2-D crack analysis by utilizing an enriched natural element method

  • Cho, J.R.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.505-512
    • /
    • 2020
  • This paper presents an error estimation technique for 2-D crack analysis by an enriched natural element (more exactly, enriched Petrov-Galerkin NEM). A bare solution was approximated by PG-NEM using Laplace interpolation functions. Meanwhile, an accurate quasi-exact solution was obtained by a combined use of enriched PG-NEM and the global patch recovery. The Laplace interpolation functions are enriched with the near-tip singular fields, and the approximate solution obtained by enriched PG-NEM was enhanced by the global patch recovery. The quantitative error amount is measured in terms of the energy norm, and the accuracy (i.e., the effective index) of the proposed method was evaluated using the errors which obtained by FEM using a very fine mesh. The error distribution was investigated by calculating the local element-wise errors, from which it has been found that the relative high errors occurs in the vicinity of crack tip. The differences between the enriched and non-enriched PG-NEMs have been investigated from the effective index, the error distribution, and the convergence rate. From the comparison, it has been justified that the enriched PG-NEM provides much more accurate error information than the non-enriched PG-NEM.

A Study on performance comparison of frequency estimators for sinusoid (정현파 신호 주파수 추정 알고리즘의 추정 정확도 비교 연구)

  • Cho, Hyunjin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.457-467
    • /
    • 2018
  • This paper presents performance comparison of several high-resolution frequency estimation algorithms for pure real tone signal. Algorithms are DFT (Discrete Fourier Transform - for reference purpose), Jacobsen, Candan, reassignment and Cedron. Each algorithm is evaluated under various experimental conditions, e.g., different SNR (Signal to Noise Ratio), window function and window length and performance is compared in the perspective of bias, MSE (Mean Square-Error) and variance. Experimental results indicate that Cedron algorithms works well in the most cases. For actual usage in the engineering problem, each algorithm needs additional analysis and modification.

Magnet Location Estimation Technology in 3D Using MI Sensors (MI센서를 이용한 3차원상 자석 위치 추정 기술)

  • Ju Hyeok Jo;Hwa Young Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.232-237
    • /
    • 2023
  • This paper presents a system for estimating the position of a magnet using a magnetic sensor. An algorithm is presented to analyze the waveform and output voltage values of the magnetic field generated at each position when the magnet moves and to estimate the position of the magnet based on the analyzed data. Here, the magnet is sufficiently small to be inserted into a blood vessel and has a micro-magnetic field of hundreds of nanoteslas owing to the small size and shape of the guide wire. In this study, a highly sensitive magneto-impedance (MI) sensor was used to detect these micro-magnetic fields. Nine MI sensors were arranged in a 3×3 configuration to detect a magnetic field that changes according to the position of the magnet through the MI sensor, and the voltage value output was polynomially regressed to specify a position value for each voltage value. The accuracy was confirmed by comparing the actual position value with the estimated position value by expanding it from a 1D straight line to a 3D space. Additionally, we could estimate the position of the magnet within a 3% error.

Nonlinear regression methods and genetic algorithms for estimation of compression index of clays using toughness limit

  • Satoru Shimobe;Eyyub Karakan;Alper Sezer
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.371-382
    • /
    • 2024
  • Measurement or prediction of compression index (Cc) of soils is essential for assessment of total and differential settlement of structures. It is a well-known fact that this parameter is controlled by several index identifiers of soil including initial void ratio, Atterberg limits, overconsolidation ratio, specific gravity, etc. Many studies in the past proposed relationships for prediction of Cc based on different index properties. Therefore, this study aims to present a comparison of previously proposed equations for estimation of Cc. Data from literature was compiled, and a total of 90 and 623 test results on remolded and undisturbed specimens were used to question the validity of previously proposed equations. Nevertheless, the modeling ability of 7 and 12 equations for estimation of Cc of remolded and undisturbed soils were questioned by use of compiled data. Moreover, new empirical relationships based on initial void ratio and toughness limit for prediction of Cc was proposed by use of nonlinear multivariable regression and evolutionary based regression analyses. The results are promising-the performances of models established are quite acceptable, which are verified by statistical analyses.

Estimation of Fine-Scale Daily Temperature with 30 m-Resolution Using PRISM (PRISM을 이용한 30 m 해상도의 상세 일별 기온 추정)

  • Ahn, Joong-Bae;Hur, Jina;Lim, A-Young
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.101-110
    • /
    • 2014
  • This study estimates and evaluates the daily January temperature from 2003 to 2012 with 30 m-resolution over South Korea, using a modified Parameter-elevation Regression on Independent Slopes Model (K-PRISM). Several factors in K-PRISM are also adjusted to 30 m grid spacing and daily time scales. The performance of K-PRISM is validated in terms of bias, root mean square error (RMSE), and correlation coefficient (Corr), and is then compared with that of inverse distance weighting (IDW) and hypsometric methods (HYPS). In estimating the temperature over Jeju island, K-PRISM has the lowest bias (-0.85) and RMSE (1.22), and the highest Corr (0.79) among the three methods. It captures the daily variation of observation, but tends to underestimate due to a high-discrepancy in mean altitudes between the observation stations and grid points of the 30 m topography. The temperature over South Korea derived from K-PRISM represents a detailed spatial pattern of the observed temperature, but generally tends to underestimate with a mean bias of -0.45. In bias terms, the estimation ability of K-PRISM differs between grid points, implying that care should be taken when dealing with poor skill area. The study results demonstrate that K-PRISM can reasonably estimate 30 m-resolution temperature over South Korea, and reflect topographically diverse signals with detailed structure features.

A Study on Complex Field Network Coding Scheme for Wireless Relay System (무선 릴레이 시스템에서의 Complex Field Network Coding 기법 적용에 관한 연구)

  • Hwang, Won-Jun;Jang, Jun-Hee;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4C
    • /
    • pp.241-253
    • /
    • 2011
  • In this paper, a CFNC (Complex Field Network Coding) scheme is presented, which focuses on improving transmission efficiency by reducing time slots that are needed to exchange data frames. Conventional CFNC scheme has the advantage of minimizing the number of time slots required for information exchanges. However, there exists serious performance deterioration because the transmit signals are interfered with each other. Moreover, when CFNC scheme is applied, the estimation and compensation performance of fine frequency offset severely deteriorates due to the multiple frequency offsets in received signal of relay node. In order to overcome these critical problems, we propose an improved CFNC scheme with modified maximum likelihood decision method which uses uplink transmit diversity. Also, we propose an enhanced fine frequency offset estimation method and a corresponding compensation method to deal with the multiple frequency offsets. Corresponding simulation results verify that the proposed methods are able to effectively solve the problems of CFNC scheme.