• Title/Summary/Keyword: Fine aggregates

Search Result 418, Processing Time 0.029 seconds

Engineering Characteristics of Ultra High Strength Concrete with 100 MPa depending on Fine Aggregate Kinds and Mixing Methods (잔골재 종류 및 혼합방법 변화에 따른 100 MPa 급 초고강도 콘크리트의 공학적 특성)

  • Han, Min-Cheol;Lee, Hong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.536-544
    • /
    • 2016
  • Recently, with the increase in the number of high rise and huge scaled buildings, ultra-high strength concrete with 80~100 MPa has been used increasingly to withstand excessive loads. Among the components of concrete, the effects of the kinds and properties of fine aggregates on the performance and economic advantages of ultra-high strength concrete need to be evaluated carefully. Therefore, this study examined the effects of the type of fine aggregates and mixing methods on the engineering properties of ultra-high strength concrete by varying the fine aggregates including limestone fine aggregate (LFA), electrical arc slag fine aggregate (EFA), washed sea sand (SFA), and granite fine aggregate (GFA) and their mixtures. Ultra-high strength concrete was fabricated with a 20 % water to binder ratio (W/B) and incorporated with 70 % of Ordinary Portland cement: 20 % of fly ash:10 % silica fume. The test results indicate that for a given superplasticizer dose, the use of LFA resulted in increases in slump flow and L-flow compared to the mixtures using other aggregates due to the improved particle shape and grading of LFA. In addition, the use of LFA and EFA led to enhanced compressive strength and a decrease in autogenous shrinkage due to the improved elastic properties of LFA and the presence of free-CaO in EFA, which resulted in the formation of C-S-H.

Shear Performance of Full-Scale Recycled Fine Aggregate Concrete Beams without Shear Reinforcement (전단 보강되지 않은 실규모 순환 잔골재 콘크리트 보의 전단성능)

  • Lee, Young-Oh;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.225-232
    • /
    • 2012
  • This paper presents the test results on the shear performance of large-size reinforced concrete beams using recycled fine aggregate to evaluate its applicability to structural concrete. The performance of these beams is compared to that of similar beams casted with natural coarse and fine aggregates. All of the beam specimens without shear reinforcement had $400mm{\times}600mm$ rectangular cross section and a shear span ratio (a/d) of 5.0. Five concrete mixtures with different replacement levels of recycled fine aggregates (0, 30, 60, 70 and 100%) were used to obtain a nominal concrete compressive strength of 28MPa. The test results of load-deflection curve, shear deformation, diagonal cracking load, crack pattern, ultimate shear strength, and failure mode are examined and compared. In addition, code and empirical equations from KCI, JSCE, CSA, Zsutty, and MCFT were considered to evaluate the applicability of these equations for predicting shear strength of reinforced concrete beam with recycled fine aggregate. The results showed that the overall shear behavior of reinforced concrete beams incorporating less than 60% recycled fine aggregate was comparable with that of conventional concrete beam. The MCFT gave good prediction and other code equations were conservative in predicting the shear strength of the tested beams. The beam specimens with replacement of 70 and 100% of natural fine aggregates by recycled fine aggregates showed different failure mode than other tested beams.

Effect of Recycled Fine Aggregates and Fly Ash on the Mechanical Properties of PVA Fiber-Reinforced Cement Composites (순환잔골재 및 플라이애시가 PVA 섬유보강 시멘트 복합체의 역학적 특성에 미치는 영향)

  • Nam, Yi-Hyun;Park, Wan-Shin;Jang, Young-Il;Yun, Hyun-Do;Kim, Sun-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.149-157
    • /
    • 2017
  • As the amount of construction wastes increase, reuse of recycled materials is being considered in research areas. While there are many experimental investigations focusing on development of mortar and concrete using the recycled materials, the studies regarding the fiber-reinforced cement composites (FRCCs) using recycled materials are still limited. In this paper, an experimental attempt has been made to investigate the effect of recycled fine aggregates and fly ash on the mechanical properties of PVA FRCCs. The cement and natural sand were respectively replaced by fly ash and recycled fine aggregates at two content levels, 25% and 50%. Ten types of PVA FRCCs mixes were fabricated and tested to investigate the flexural, compressive and direct tensile behaviors. The test results show that flexural, compressive and direct tensile strength were decreased with increase in fly ash content at all ages. In particular, flexural, compressive and direct tensile strengths of specimens, containing 50% recycled fine aggregates and 50% fly ash, showed the lowest values. The modulus of elasticity of specimens showed similar trend to the 28-day compressive strength. Poisson's ratio was increased with increase in fly ash and recycled fine aggregates content.

Experimental Study on the Proposal of an Assessment Method and Quality Standard for Identifying the Fine Particles of Clay Components in Fine Aggregates (잔골재의 토분 평가방법 및 품질기준 제안을 위한 실험적 연구)

  • Choi, Hyun-Kyu;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.585-596
    • /
    • 2022
  • The purpose of this study is to propose an assessment method to analyze clay collectively referred to as fine particles of clay components contained in fine aggregates, and to propose quality standards for clay use through correlation with the performance of concrete to verify the properties of clay measured according to the method. As a result, it is analyzed that it will be suitably utilized as a method to assess the fine particles of the clay component of fine aggregates through the component analysis of XRF. Regarding the related quality standards, considering the error rate of about 10% of KCS 14 20 10, the related quality standards were analyzed to be safe when Al2O3+Fe2O3+MgO is 23.5% or less and SiO2+K2OSiO2+K22O is 66.5% or more. To build on this study, it is expected that a comprehensive review will be conducted through additional follow-up studies such as on clay of coarse aggregates and durability analysis to establish a system for quality control of the soil fraction of aggregates.

Effect of Poor Quality Aggregates on the Properties of High Strength Concrete (품질불량 골재가 고강도 콘크리트의 공학적 특성에 미치는 영향)

  • Lee, Sun-Jae;Song, Yuan-Lou;Lee, Hong-Kyu;Lee, Myeoung-Ho;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.113-114
    • /
    • 2015
  • This paper is to investigate the effect of poor quality aggregate source used in Korea on the mixture proportion and strength development of the high strength concrete fixed at 450 kg/m3 of cement contents. For aggregate kinds, good quality crushed stone from KS certified manufacturer and low quality crushed stone from non certified construction field are used. For fine aggregates, river sand, land sand, sea sand and mixed sand are also used. It is found that the use of low quality aggregates resulted in an increase of water demand considerably due to poor gradation of aggregate and excessive fine particles. Test results indicate that the use of low quality aggregate also decreases the compressive strength compared with that of good quality aggregate.

  • PDF

Influence of Fine Aggregate on the Bleeding of Concrete (잔골재가 콘크리트의 블리딩에 미치는 영향)

  • 황인성;배정렬;심보길;전충근;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.317-322
    • /
    • 2001
  • This paper investigates the influence of fine aggregates on bleeding of concrete. According to test results, as water content decreases, crushed sand content increases, fluidity shows decline tendency. As for aggregates kinds, concrete using sea sand shows most fluidity loss among the tested results. Compressive strength gains highly when crushed sand is used. As for bleeding of concrete, bleeding shows decline tendency because of increasing in powder content and filling effect of voids. Bleeding amount is in a decreasing order of magnitude for concretes made with the following aggregates: sea sand, river sand, and crushed sand. Accordingly, crushed sand mixed with river sand and sea sand with certain proportion enable to reduce bleeding and enhance strength.

  • PDF

Engineering Characteristics of Permeable Mortar using Water-Quenched Blast Furnace Slag as Eine Aggregates (고로급냉슬래그를 활용한 투수성 모르타르의 공학적 특성에 관한 기초연구)

  • 방윤경;박재로
    • Journal of the Korean Professional Engineers Association
    • /
    • v.33 no.4
    • /
    • pp.77-83
    • /
    • 2000
  • In this study, engineering characteristics of permeable mortar using water-quenched blast furnace slag as fine aggregates were analyzed by laboratory experiments to examine its suitability for permeable concrete pavement techniques. Engineering characteristics of mortar were investigated by performing both the compressive, flexural strength tests together with the constant head permeability tests for twenty-six types of mixing samples having different percetage of slag, cement and water. After 28days of curing, every performance was tested to find optimum mixture. When the go coefficient of permeability was 10$\^$-2/cm / sec and flexural strength was 30kg/㎠, we conclusion that the best mix design in permeable mortar was made in the condition,60% of cement and 20% of water percentage of unit slag contents. From the present investigations, it is concluded that suitability for permeable concrete pavement techniques using water-quenched blast furnace slag as fine aggregates may possibly be used to achieve effects on strength together with drainage effects.

  • PDF

Quality of Recycled Fine Aggregate using Neutral Reaction with Sulfuric Acid and Low Speed Wet Abrader

  • Kim, Ha-Seog;Lee, Kyung-Hyun;Kim, Jin-Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.490-502
    • /
    • 2012
  • The use of recycled aggregate, even for low-performance concrete, has been very limited because recycled aggregate, which contains a large amount of old mortar, is very low in quality. To produce a high-quality recycled aggregate, removing the paste that adheres to the recycled aggregate is very important. We have conducted research on a complex abrasion method, which removes the component of cement paste from recycled fine aggregate by using both a low-speed wet abrasion crusher as a mechanical process and neutralization as chemical processes, and well as research on the optimal manufacturing condition of recycled fine aggregates. Subsequently, we evaluated the quality of recycled fine aggregate manufactured using these methods, and tested the specimen made by this aggregate. As a result, it was found that recycled fine aggregates produced by considering the aforementioned optimal abrasion condition with the use of sulfuric acid as reactant showed excellent quality, recording a dry density of 2.4 and an absorption ratio of 2.94. Furthermore, it was discovered that gypsum, which is a reaction product occurring in the process, did not significantly affect the quality of aggregates. Furthermore, the test of mortar using this aggregate, when gypsum was included as a reaction product, showed no obvious retarding effect. However, the test sample containing gypsum recorded a long-term strength of 25.7MPa, whereas the test sample that did not contain gypsum posted a long-term strength of 29.4MPa. Thus, it is thought to be necessary to conduct additional research into the soundness and durability because it showed a clear reduction of strength.

Experimental study on rheology, strength and durability properties of high strength self-compacting concrete

  • Bauchkar, Sunil D.;Chore, H.S.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.183-196
    • /
    • 2018
  • The rheological behaviour of high strength self compacting concrete (HS-SCC) studied through an experimental investigation is presented in this paper. The effect of variation in supplementary cementitious materials (SCM) $vis-{\grave{a}}-vis$ four different types of processed crushed sand as fine aggregates is studied. Apart from the ordinary Portland cement (OPC), the SCMs such as fly ash (FA), ground granulated blast furnace slag (GGBS) ultrafine slag (UFS) and micro-silica (MS) are used in different percentages keeping the mix -paste volume and flow of concrete, constant. The combinations of rheology, strength and durability are equally important for selection of mixes in respect of high-rise building constructions. These combinations are referred to as the rheo-strength and rheo-durability which is scientifically linked to performance based rating. The findings show that the fineness of the sands and types of SCM affects the rheo-strength and rheo-durability performance of HS-SCC. The high amount of fines often seen in fine aggregates contributes to the higher yield stress. Further, the mixes with processed sand is found to offer better rheology as compared to that of mixes made using unwashed crushed sand, washed plaster sand, washed fine natural sand. The micro silica and ultra-fine slag conjunction with washed crushed sand can be a good solution for high rise construction in terms of rheo-strength and rheo-durability performance.

A Study on the Quality Evaluation of Recycled Aggregate (In the case of the Mortar Produced With Recycled Concrete Powder) (재생 골재의 품질 평가에 관한 연구 (콘크리트폐재의 미분말을 혼입한 재생몰탈의 경우))

  • 서상교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.172-179
    • /
    • 1996
  • Recently, the broken concrete lumps resulting from the demolition of concrete structures are creshed for reuse as aggregates(i.e. recycled fine and gravel). And also, in the processing of crusing, the recycled powder of an equivalent of between 20% to 30% by wt.% of the broken concrete lumps is generated. The extensive research of recycled concrete aggregates has been carried out in various parts of the world. But less reseatch on the reuse of recycled concrete powder has been carried out. It is the purpose of this report that the study on the quality evaluation of recycled aggregates for recycled concrete. In specially, this report deals with the properties such as flow, compressive strength, bending strength, drying shrinkage and wight loss rate of mortars replaced standard fine aggregate with recycled powders at the rate of 3, 7, 15, 20 and 30 wt.%. Since the characteristics of recycled mortars with the recycled powders were comparable to those of the normal mortar without the recycled powders as described above, its concretes could be found extensive application in such field as concrete products.

  • PDF