• Title/Summary/Keyword: Fine aggregates

Search Result 418, Processing Time 0.027 seconds

A Study on the Strength Properties and Life Cycle Assessment of Recycled Fine Aggregate Concrete (순환잔골재 혼입 콘크리트의 강도 특성 및 전과정 환경영향 평가 연구)

  • Choi, Won-Young;Kim, Sang-Heon;Lee, Sea-Hyun;Jeon, Chan-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • The purpose of this study is to confirm the strength characteristics of concrete according to the mixing ratio of recycled fine aggregates and to use it as basic data for the use of recycled fine aggregates in concrete. For this purpose, the target design compression strength was set at 27MPa. Considering practical use of recycled aggregate, the mixing ratio of recycled fine aggregate was set at 0, 30, 60, and 100%, and the unconfined concrete and hardened concrete were tested. The LCA method was used to evaluate the environmental impact of recycled fine aggregate concrete, and the effectiveness of recycled fine aggregate in the production of concrete was verified.

A study on the ecological lightweight aggregates made of bottom ashes and dredged soils (저회 및 준설토를 이용한 에코인공경량골재의 제조에 관한 연구)

  • Jeon, Hye-Jin;Kim, Yoo-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.3
    • /
    • pp.133-137
    • /
    • 2007
  • Ecological lightweight aggregates were made in order to recycle the dredged soils from the seaside construction area and the bottom ashes from the power plant. Various physical and chemical analysis were performed on them to identify their possibility for applying lightweight concrete fields. Lightweight aggregates were made of bottom ashes and dredged soils from Yongheung Island which is located 20km west away from Seoul, and all the raw materials were milled before mixing. The physical and chemical properties such as density, absorption rate, stability, alkali latency reaction, heavy metal leaching of the lightweight aggregates were tested and analysed by following the KS standard procedures. From the size analysis, the coarse aggregates showed a suitable fit on standard particle ranges; however, the fine aggregates showed a large deviation from the standard. The absorption rates were increased with decreasing weight of the aggregates. All the aggregates were turned out to be safe by the stability and heavy metal leaching test; however, some of the aggregates were confirmed on the border of harmless and possibly harmful region through the alkali latency reactivity test.

Fundamental Properties of Controlled Low Strength Materials Mixed Blast Furnace Slag and Sewage Sludge (고로슬래그미분말 및 하수슬러지를 혼입한 시멘트계 저강도 재료의 기초적 물성)

  • Kim, Dong-Hun;Park, Shin;Lim, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.53-54
    • /
    • 2015
  • As the result of uniaxial compression strength test on the CLMS mixing BFS and SS with BFS 4000, it required to determine the desired strength through increasing unit quantity of cement in mixing process because of dramatic strength deterioration of strength according to increasing replacing rate. In this study's result, regardless of differences in fine aggregates used, in order to get uniaxial compression strength in the scope exceeding criteria of minimum strength for applying to the field, the most reasonable combination was to mix replacing BFS with fineness of 6000 in 30%. For the CLMS mixing BFS and SS, in order to improve flow ability by securing quantity of minimum unit and to repress bleeding rate with securing uniaxial compress strength considering the field applicability, regardless of differences in fine aggregates used, to mix BFS over 6000 in 30% was most effective.

  • PDF

Properties of Unsaturated Polyester Mortar Using Shale as Fine Aggregates (혈암을 잔골재로 사용한 불포화 폴리에스터 모르터의 특성)

  • 박준철;배근철;최영준;서인식;김화중;김영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.129-134
    • /
    • 2001
  • The purpose of this study is to investigate properties of unsaturated polyester mortar using the shale as find aggregates. To evaluate properties of unsaturated polyester mortar using crushed sand from Black shale, Red shale, Gray shale, we peformed the experiment according the F/B ratio of 25, 30, 35% and the volume of fine aggregate of 50, 53, 56%. The Result of this study is as follows. the strength of unsaturated polyester mortar is higher than those of river sand. The F/B ratio is higher and the volume of find aggregate is lower, the strength of unsaturated polyester mortar is higher

  • PDF

A STUDY ON THE PROPERTIES OF HARDENED CEMENT MORTAR MIXED WITH WASTE INCINERATED ASH (쓰레기 소각재를 혼입한 시멘트 경화체의 특성에 관한 연구)

  • 이승한;정용욱;한형섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.190-195
    • /
    • 1997
  • The purpose of this study was to use daily waste incinerated ash, which was reclaimed worthlessly, as substitutes of fine aggregates in concrete. Various kinds of admixture was utilized to strengthen the cement mortar mixed with waste incinerated ash, and altered the curing condition to diminish the rate of expansion. By the results of this experiment, it was possible to produce the lightweight concrete, charactered with the gravity below 1.5 and over 160kg/$\textrm{cm}^2$ compressive strength by replacing all fine aggregates with waste incinerated ash. It was also observed that the low temperature curing condition, lessoned gas exhausts, was effective to increase the strength of cement mortar.

  • PDF

Load Carrying Capacity and Deformation Properties of Steel Fiber Reinforced Concrete Slab Model Utilizing Waste Glass by Fine Aggregates (폐유리를 잔골재로 활용한 강섬유보강 슬래브모델의 내력 및 변형률특성)

  • 박승범;김경훈;이봉춘;이준;정명일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.385-390
    • /
    • 2003
  • As growing of industrialization and increasing of population, the quantities of waste glasses are rapidly growing in the earth. It cause some problems such as the waste of natural resources and environmental pollution. In this context, recycling waste glass as a material of concrete has a great advantage environmentally and economically. This study is aimed to investigate the effect of load and deflection on fiber reinforced concrete slab model utilizing waste glass by fine aggregates. The flexural strength of the concrete including waste glass increased considerably, as the inclusion rate of steel fiber were increased. And the first crack load, maximum load and energy absorption capacity increased remarkably as the inclusion rate of steel fiber were increased. Therefore, in this study we confirmed the possibility of application for the usage of waste glass to the steel fiber reinforced concrete.

  • PDF

A Study on the Development of Polymer Concrete Curbs Using Recycled Aggregate (재생골재를 사용한 폴리머콘크리트 경계블록의 개발 연구)

  • 최영준;박준철;윤요현;김상연;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1127-1132
    • /
    • 2000
  • The purpose of this study is to investigate the utilization of recycled fine aggregates as a material to apply to concrete curbs. This study also intends to improve the quality of recycling aggregates by adding an excellent polyester resin for the improvement of durability, anti-corrosiveness, and strength. The experimental mixing proportion was planned to acquire optimum workability and filling capability of resin mortar mixed with the recycled fine aggregate. The curbs products made for test have four type cross sections. Their flexible fracture load is 1,918~6,883kgf and their weight is 15.31~31.61kg.

  • PDF

Hydration Analysis of Fine Particle and Old Mortar Attached on the Surface of Recycled Aggregate

  • Ko, Dong-Woo;Choi, Hee-Bok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.460-467
    • /
    • 2012
  • When recycled aggregate with old mortar and particles is used in concrete mixing, such aggregates can affect hydration reaction by promoting or inhibiting it. In this study, the possibility of hydration reaction on old mortar and particle was analyzed. Hydration reaction was carried out in old mortar that is finely crushed by an impact machine in the production of recycled aggregates, and it was found that this did have an impact on the strength development of concrete. Unlike in old cement, the hydration reaction did not progress in the particles, and it had high amounts of silica powder and calcium carbonate. In conclusion, the old mortar can have the influence of improving compressive strength, but the particles can delay the setting time of recycled aggregate concrete.

Evaluation of Resistance to Freezing and Thawing of Concrete using Industrial by-products Aggregate (산업부산물 골재를 사용한 콘크리트의 내동해성 평가)

  • Choi, Sung-Woo;Ryu, Deug-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.226-227
    • /
    • 2021
  • Various attempts are being made to reduce carbon emissions through recycling of industrial by-products in the construction materials industry to reduce carbon emissions, and cement substitutes such as blast furnace slag and fly ash are widely used. Although it is suggested that the use of industrial by-product aggregate is possible in 'Aggregate', the use case of industrial by-product aggregate is very rare in the actual field. In this study, as an industrial by-product, fine slag aggregate is used as fine aggregate among aggregates that can be used as aggregate for concrete, and coarse aggregate is used as a substitute for natural aggregate. WWe tried to suggest various ways to expand the use of industrial by-product aggregates.

  • PDF

An Experimental Study on the Mixing Condition of High-Flow Concrete (배합조건에 따른 고유동콘크리트의 성상에 관한 실험적 연구)

  • 김상철;엄태용;최수홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.19-24
    • /
    • 1995
  • Most difficulties in inducing high flowability of general strength concrete arise from the segregation of aggregates due to the shortage of cementatious binders. To solve the problem, our research team has concentrated on finding the binders to link a gap between coarse and fine aggregates, under the condition not to influence a concrete strength. As a result of using stone powder or a middle class of aggregate size mostly used for asphalt pavement(Max. dia 13mm), we found that flowability of concrete increased significantly without aggregation and decrease of compressive strength.

  • PDF