• Title/Summary/Keyword: Fine Grains

Search Result 358, Processing Time 0.024 seconds

Grain Refinement and Phase Transformation of Friction Welded Carbon Steel and Copper Joints

  • Lee, W.B.;Lee, C.Y.;Yeon, Y.M.;Kim, K.K.;Jung, S.B
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.46-52
    • /
    • 2003
  • The refinement of microstructure and phase transformation near the interface of pure copper/carbon steel dissimilar metals joints with various friction welding parameters have been studied in this paper. The microstructure of copper and carbon steel joints were changed to be a finer grain compared to those of the base metals due to the frictional heat and plastic deformation. The microstructure of copper side experienced wide range of deformed region from the weld interface and divided into very fine equaxied grains and elongated grains. Especially, the microstructures near the interface on carbon steel were transformed from ferrite and pearlite dual structure to fine ferrite, grain boundary pearlite and martensite due to the welding thermal cycle and rapid cooling rate after welding. These microstructures were varied with each friction welding parameters. The recrystallization on copper side is reason for softening in copper side and martensite transformation could explain the remarkable hardening region in carbon steel side.

  • PDF

Measurement of Crystallite Size of Method and Evaluation of Crystal Defects (X선 회절법에 의한 할로겐화 은 유제입자의 크리스탈라이트 크기 측정과 결정결함 평가에 관한 연구)

  • Bae, Chang-Hwan;Lee, Ju-Hee;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.330-336
    • /
    • 2009
  • The size of crystallites in mono-dispersed cubic silver bromide grains was measured by applying a powder X-ray diffraction method and Scherrer's equation to grains that were suspended in swollen gelatin layers. In order to evaluate the existence of defects, the measured crystallite size was compared to those measured by using a scanning electron microscope. In the case of the grains prepared by the controlled double jet method, the size of crystallites was equal to the edge length of the grains that had edge lengths smaller than 400 nm. This result proved the usefulness of the above-stated method for measuring the size of crystallites and also evaluating the presence of any crystal defect in each grain. In the case of the grains, which were precipitated in the presence of a sensitizing dye and potassium iodide, the size of crystallites was smaller than the edge's length, indicating the discontinuities in the grains introduced during the precipitation process.

Coercivity of Nd-Fe-B-type Fine Particles Prepared from Different Precursor Materials

  • Kim, K.M.;Kwon, H.W.;Lee, J.G.;Yu, J.H.
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.21-25
    • /
    • 2015
  • Fine Nd-Fe-B-type particles were prepared by ball milling of different types of Nd-Fe-B precursor materials, such as die-upset magnet, HDDR-treated material, and sintered magnets. Coercivity dependence on the grain and particle size of the powder was investigated. Coercivity of the milled particles was reduced as the particle size decreased, and the extent of coercivity loss was dependent upon the precursor material. Coercivity loss in the finely milled particles was attributed to the surface oxidation. The extent of coercivity loss in the fine particles was closely linked to grain size of the precursor materials. Coercivity loss was more profound for the fine particles with larger grain size. Contrary to the fine particles from the sintered magnets with larger grain size the fine particles (~10 um) from the die-upset magnet and HDDR-treated material with much finer grain size still retained high coercivity (> 10 kOe for die-upset magnet, > 4 kOe for HDDR-treated material).

High-Temperature Deformation Behavior of Ti3Al Prepared by Mechanical Alloying and Hot Pressing

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.57-60
    • /
    • 2020
  • Titanium aluminides have attracted special interest as light-weight/high-temperature materials for structural applications. The major problem limiting practical use of these compounds is their poor ductility and formability. The powder metallurgy processing route has been an attractive alternative for such materials. A mixture of Ti and Al elemental powders was fabricated to a mechanical alloying process. The processed powder was hot pressed in a vacuum, and a fully densified compact with ultra-fine grain structure consisting of Ti3Al intermetallic compound was obtained. During the compressive deformation of the compact at 1173 K, typical dynamic recrystallization (DR), which introduces a certain extent of grain refinement, was observed. The compact had high density and consisted of an ultra-fine equiaxial grain structure. Average grain diameter was 1.5 ㎛. Typical TEM micrographs depicting the internal structure of the specimen deformed to 0.09 true strain are provided, in which it can be seen that many small recrystallized grains having no apparent dislocation structure are generated at grain boundaries where well-developed dislocations with high density are observed in the neighboring grains. The compact showed a large m-value such as 0.44 at 1173 K. Moreover, the grain structure remained equiaxed during deformation at this temperature. Therefore, the compressive deformation of the compact was presumed to progress by superplastic flow, primarily controlled by DR.

Growth of High Uniform Polycrystalline Grain on the Highly Ordered Porous Anodic Alumina (다공질 양극산화 피막을 이용한 고균일 다결정 살리콘의 성장)

  • Kim, Jong-Yeon;Han, Jin-Woo;Kim, Young-Hwan;Kim, Byoung-Yong;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.375-375
    • /
    • 2007
  • In the conventional crystallization method, thepoly-Si TFTs show poor device-to-device uniformity because of the random location of the grain boundaries. However, our new crystallization method introduced in this paper employed substrate-embedded seeds on the highly ordered anodic alumina template to control both the location of seeds and the number of grain boundaries intentionally. In the process of excimer laser crystallization (ELC), a-Si film deposited on the anodic alumina by low pressure chemical vapor deposition (LPCVD) is transformed into fine poly-Si grains by explosive crystallization (XC) prior to primary melting. At the higher energy density, the film is nearly completely melted and laterally grown by super lateral growth (SLG) from remained small part of the fine poly-Si grains as seeds at the Si/anodic alumina interface. Resultant grain boundaries have almost linear functions of the number of seeds in concavities of anodic alumina which have a constant spacing. It reveals the uniformity of. device can be enhanced prominently by controlling location and size of pores which contains fine poly~Si seeds under artificial anodizing condition.

  • PDF

Effect of Annealing Temperature on Dynamic Deformation Behavior of Ultra-Fine-Grained Aluminum Alloys Fabricated by Equal Channel Angular Pressing (ECAP으로 제조된 초미세립 알루미늄 합금의 동적 변형거동에 미치는 어닐링 온도의 영향)

  • Kim, Yang Gon;Ko, Young Gun;Shin, Dong Hyuk;Lee, Chong Soo;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.563-571
    • /
    • 2008
  • The influence of annealing treatment on dynamic deformation behavior of ultra-fine grained aluminum alloys was investigated in this study. After equal-channel angular pressing at $200^{\circ}C$, most of the grains were considerably reduced to nearly equiaxed grains of $0.3{\mu}m$ in size. With an increment of various annealing treatments for 1 hour, resultant microstructures were found to be fairly stable at temperatures up to $200^{\circ}C$, suggesting that static recovery would be dominantly operative, whereas grain growth was pronounced above $250^{\circ}C$. The tensile test results showed that yield and ultimate tensile strengths decreased, but elongation-to-failure and strain hardening rate increased with increasing annealing temperature. The dynamic deformation behavior retrieved with a series of torsional tests was explored with respect to annealed microstructures. Such mechanical response was analyzed in relation to resultant microstructure and fracture mode.

Mineralogy of Low-Grade Uranium Ores in the Black Slate of the Ogcheon Group, Korea (옥천계(沃川系) 흑색(黑色)슬레이트내(內) 부존(賦存)하는 저품질(低品質) 우라늄광석(鑛石)에 대(對)한 광물학적(鑛物學的) 연구(硏究))

  • Lee, Dong-Jin
    • Economic and Environmental Geology
    • /
    • v.19 no.2
    • /
    • pp.133-146
    • /
    • 1986
  • Primary uraninite and secondary uranium minerals such as torbernite, metatorbernite, tyuyamunite, metatyuyamunite, autunite and metaautunite have been identified from various types of uranium ores. Uranium minerals occur as accessory minerals in both the primary and secondary ores. Low·grade uranium ores consist of various kinds of primary and secondary minerals. Major constituent minerals of primary uranium ores are graphite. quartz. Ba-feldspar and sericite/muscovite, and accessories are calcite, chlorite, fluorapatite, barite, diopside, sphene, rutile, biotite, laumontite, heulandite, pyrite, sphalerite and chalcopyrite, and secondary minerals consist of kaolinite, gypsum and goethite. Uraninite grains occur as microscopic very fine-grained anhedral to euhedral disseminated particles in the graphitic matrix, showing well·stratified or zonal distribution of uranium on auto-radiographs of low-grade uranium ores. Some uraninite grains are closely associated with very fine-grained pyrite aggregates, showing an elliptical form parallel to the schistosity. Some uraninite grains include extremely fine-grained pyrite particle. Sphalerite and pyrite are often associated with uraninite in graphite-fluorapatite nodule. The size of uraninite is $2{\mu}m$ to $20{\mu}m$ in diameter. Low-grade uranium ores are classified into 5 types on the basis of geometrical pattern of mineralization. They are massive, banded, nodular, quartz or sulfide veinlet-rich and cavity filling types. Well-developed alternation of uranium-rich and uranium-poor layers, concentric distribution of uranium in graphite-fluorapatite nodule and geopetal fabrics due to the load cast of the nodule suggest that the uranium was originally deposited syngenetically. Uraninite crystals might have been formed from organo-uranium complex during diagenesis and recrystallized by metamorphism. Secondary uranium minerals such as torbernite, tyuyamunite and autunite have been formed by supergene leaching of primary ores and subsequent crystallization in cavities.

  • PDF

Compressibility of broken rock-fine grain soil mixture

  • Xu, Ming;Song, Erxiang;Cao, Guangxu
    • Geomechanics and Engineering
    • /
    • v.1 no.2
    • /
    • pp.169-178
    • /
    • 2009
  • Due to the enormous amount of fills required, broken rock-fine grain soil mixtures have been increasingly used in the construction of high-fill foundations for airports, railways and highways in the mountain areas of western China. However, the compressibility behavior of those broken rock-fine grain soil mixtures remains unknown, which impose great uncertainties for the performance of those high-fill foundations. In this research, the mixture of broken limestone and a fine grain soil, Douposi soil, is studied. Large oedometer tests have been performed on specimens with different soil content. This research reveals the significant influence of fine grains on the compressibility of the mixture, including immediate settlement, creep, as well as wetting deformation.

Diurnal and Nocturnal Behaviour of Airborne Cryptomeria japonica Pollen Grains and the Allergenic Species in Urban Atmosphere of Saitama, Japan

  • Wang, Qingyue;Nakamura, Shinichi;Lu, Senlin;Nakajima, Daisuke;Suzuki, Miho;Sekiguchi, Kazuhiko;Miwa, Makoto
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.65-71
    • /
    • 2013
  • Japanese cedar (Cryptomeria japonica) pollinosis is the most popular pollinosis in Japan. It has been reported that Cryptomeria japonica pollen allergenic species are suspended as fine particles in the urban atmosphere. These allergenic fine particles are responsible for inducing asthma by breaking into the lower respiratory tract. It has also been found that pollinosis symptoms on the sufferers appear mainly at night-time by the results from epidemiological studies. However, the exact reason for these phenomena is not yet clarified. In this study, the diurnal and nocturnal behaviours of Cryptomeria japonica pollen grains and their allergenic species in the urban area of Saitama city of Kanto Plain were investigated. Airborne pollen grains and allergenic Cry j 1 concentrations in total suspended particulate matter (TSP) were investigated at two sampling sites, a heavy traffic road (roadside site) and at the balcony of the $10^{th}$ floor of the Building of Research and Project of Saitama University (general urban site). The latter sampling site where located about 300 m away from the roadside site was used as a general urban site unaffected by automobile traffic. The airborne pollen counts were measured with a real-time pollen monitor. Cry j 1 particles were collected with two high volume air samplers, and these concentrations were measured by surface plasmon resonance method with a Biacore J system. The diurnal variation of the airborne pollen counts was similar to the trends of temperature and wind speed during the day-time; whereas its tendency with wind speed trend was not observed during the night-time. Airborne pollen counts were lower with northern wind than with southern wind because the pollen comes from the mountainous areas, and the mountains in the south are closer, about half the distance to the northern mountains. It is suggested that the peaks of airborne pollen counts during night-time in the sampling site occurred by transport of pollen grains released during day-time in the mountainous forest areas, located c.a. 100 km away from the sampling site. On the roadside site the allergenic Cry j 1 concentrations were higher than at the general urban site, nevertheless pollen grains counts were lower. These results suggested that worsening of pollinosis symptoms during night-time in urban area was caused by transport of pollen grains during day-time in the mountainous forest areas. Moreover, pollen allergenic species become different morphology from pollen grain at roadside site, and the subsequent pollen grains re-suspension by automobile traffic.

Effect of Abnormal Grain Growth and Heat Treatment on Electrical Properties of Semiconducting BaTiO3Ceramics

  • Lee, Joon-Hyung;Cho, Sang-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.21-25
    • /
    • 2002
  • Effect of abnormal grain growth and heat treatment time on the electrical properties of donor-doped semiconductive BaTiO$_3$ceramics was examined. La-doped BaTiO$_3$ceramics was sintered at 134$0^{\circ}C$ for different times from 10 to 600 min in order to change the volume fraction of the abnormal grains in samples. As a result, samples with different volume fraction of abnormal grain growth from 22 to 100% were prepared. The samples were annealed at 120$0^{\circ}C$ for various times. The resistivity of the sam-ples at room and above Curie temperature was examined. The complex impedance measurement as functions of the volume fraction of abnormal grains and annealing time was conducted. Separation of complex impedance semicircle was observed in a sample in which abnormal and fine grains coexist. The results are discussed from a viewpoint of microstructure-property relationship.