• Title/Summary/Keyword: Finding Measure Position

Search Result 31, Processing Time 0.03 seconds

Machine Learning Based BLE Indoor Positioning Performance Improvement (머신러닝 기반 BLE 실내측위 성능 개선)

  • Moon, Joon;Pak, Sang-Hyon;Hwang, Jae-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.467-468
    • /
    • 2021
  • In order to improve the performance of the indoor positioning system using BLE beacons, a receiver that measures the angle of arrival among the direction finding technologies supported by BLE5.1 was manufactured and analyzed by machine learning to measure the optimal position. For the creation and testing of machine learning models, k-nearest neighbor classification and regression, logistic regression, support vector machines, decision tree artificial neural networks, and deep neural networks were used to learn and test. As a result, when the test set 4 produced in the study was used, the accuracy was up to 99%.

  • PDF

The Effects of Hip Joint Movement on the Lumbo-pelvic Muscle Activities and Pelvic Rotation During Four-point Kneeling Arm and Leg Lift Exercise in Healthy Subjects

  • Nam-goo Kang;Won-jeong Jeong;Min-ju Ko;Jae-seop ,Oh
    • Physical Therapy Korea
    • /
    • v.30 no.2
    • /
    • pp.144-151
    • /
    • 2023
  • Background: The gluteus maximus (GM) muscle comprise the lumbo-pelvic complex and is an important stabilizing muscle during leg extension. In patients with low back pain (LBP) with weakness of the GM, spine leads to compensatory muscle activities such as instantaneous increase of the erector spinae (ES) muscle activity. Four-point kneeling arm and leg lift (FKALL) is most common types of lumbopelvic and GM muscles strengthening exercise. We assumed that altered hip position during FKALL may increase thoraco-lumbar stabilizer like GM activity more effectively method. Objects: The purpose of this study was investigated that effects of the three exercise postures on the right-sided GM, internal oblique (IO), external oblique (EO), and multifidus (MF) muscle activities and pelvic kinematic during FKALL. Methods: Twenty eight healthy individuals participated in this study. The exercises were performed three conditions of FKALL (pure FKALL, FKALL with 120° hip flexion of the supporting leg, FKALL with 30° hip abduction of the lifted leg). Participants performed FKALL exercises three times each condition, and motion sensor used to measure pelvic tilt and rotation angle. Results: This study demonstrated that no significant change in pelvic angle during hip movement in the FKALL (p > 0.05). However, the MF and GM muscle activities in FKALL with hip flexion and hip abduction is greater than pure FKALL position (p < 0.001). Conclusion: Our finding suggests that change the posture of the hip joint to facilitate GM muscle activation during trunk stabilization exercises such as the FKALL.

Experimental panoramic positioning errors for inducing condylar cutoff and superimposition of cervical vertebrae on the mandibular ramus (하악과두 잘림과 경추의 하악지 겹침을 야기하는 파노라마방사선촬영 오류)

  • Kang, Byung Cheol;Kim, Min Jong;Park, Hye Sun;Hwang, Sel Ae;Yoon, Suk Ja;Lee, Jae Seo
    • The Journal of the Korean dental association
    • /
    • v.56 no.3
    • /
    • pp.134-141
    • /
    • 2018
  • Purpose: To measure the head tilting angle creating initial condylar cut-off and to find the head position inducing the superimposition of the cervical vertebrae over the mandibular ramus on panoramic radiograph. Materials and Methods: The panoramic radiographs were taken with Didactic skull on cervical spine model (Scientific GmbH, Hamburg, Germany) using Kodak 8000c Digital Panoramic radiography. For the inherent radiolucency of the plastic skull model, radiopaque 1 mm diameter lead wires were attached along the margin of the mandibular condyle, ramus, mandibular body, cervical vertebrae, and FH plane of the skull model. For measuring the head tilting angle creating the condylar head cutoff, panoramic radiographs were taken by tilting the FH plane downward in 5 degree increments. For finding the distance between transverse process of the third cervical vertebra and gonion inducing superimposition of cervical vertebrae on the mandibular ramus, panoramic radiographs were taken by decreasing the distance in 0.5 cm increments. Result and Conclusion: The condylar cutoff began to appear when the head of skull model was tilted downward by 15o. As the head tilting angle increasing, the condylar cutoff became more prominent. The superimposition of cervical vertebrae over the mandibular ramus began to appear when the distance between the gonion and third cervical vertebra was 1.0 cm. As the distance decreasing, the superimpostion became more prominent.

  • PDF

Respiration Measurement System using Textile Capacitive Pressure Sensor (전기용량성 섬유 압력센서를 이용한 호흡측정 시스템)

  • Min, Se-Dong;Yun, Young-Hyun;Lee, Chung-Keun;Shin, Hang-Sik;Cho, Ha-Kyung;Hwang, Seon-Cheol;Lee, Myoung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.58-63
    • /
    • 2010
  • In this paper, we proposed a wearable respiration measurement system with textile capacitive pressure sensor. Belt typed textile capacitive pressure sensor approach of respiration measurement, from which respiration signatures and rates can be derived in real-time for long-term monitoring, are presented. Belt typed textile capacitive pressure sensor has been developed for this measurement system. the distance change of two plates by the pressure of motion has been used for the respiration measurement in chest area. Respiration rates measured with the textile capacitive pressure sensor was compared with standard techniques on 8 human subjects. Accurate measurement of respiration rate with developed sensor system is shown. The data from the method comparison study is used to confirm theoretical estimates of change in capacitance by the distance change. The current version of respiratory rate detection system using textile capacitive pressure sensor can successfully measure respiration rate. It showed upper limit agreement of $3.7997{\times}10^{-7}$ RPM, and lower limit of agreement of $-3.8428{\times}10^{-7}$ RPM in Bland-Altman plot. From all subject, high correlation were shown(p<0.0001). The proposed measurement method could be used to monitor unconscious persons, avoiding the need to apply electrodes to the directly skin or other sensors in the correct position and to wire the subject to the monitor. Monitoring respiration using textile capacitive pressure sensor offers a promising possibility of convenient measurement of respiration rates. Especially, this technology offers a potentially inexpensive implementation that could extend applications to consumer home-healthcare and mobile-healthcare products. Further advances in the sensor design, system design and signal processing can increase the range and quality of the rate-finding, broadening the potential application areas of this technology.

Measurement of Primary-mirror Vertex Coordinates for a Space Camera by Using a Computer-generated Hologram and a Theodolite (컴퓨터 제작 홀로그램과 데오도라이트를 이용한 인공위성 카메라 주 반사경의 정점 좌표 측정)

  • Kang, Hye-Eun;Song, Jae-Bong;Yang, Ho-soon;Kihm, Hagyong
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.146-152
    • /
    • 2017
  • Alignment of the mirrors composing a space telescope is an important process for obtaining high optical resolution and performance of the camera system. The alignment of mirrors using cube mirrors requires a relative coordinate mapping between the mirror and the cube mirror before optical-system integration. Therefore, to align the spacecraft camera mirrors, the relative coordinates of the vertex of each mirror and the corresponding cube mirror must be accurately measured. This paper proposes a new method for finding the vertex position of a primary mirror, by using an optical fiber and alignment segments of a computer-generated hologram (CGH). The measurement system is composed of an optical testing interferometer and a multimode optical fiber. We used two theodolites to measure the relative coordinates of the optical fiber located at the mirror vertex with respect to the cube mirror, and achieved a measurement precision of better than $25{\mu}m$.

Abdominal Wall Motion-Based Respiration Rate Measurement using An Ultrasonic Proximity Sensor (복부 움직임에 따른 초음파 근접센서를 이용한 호흡측정에 관한 연구)

  • Min, Se-Dong;Kim, Jin-Kwon;Shin, Hang-Sik;Yun, Young-Hyun;Lee, Chung-Keun;Lee, Jeong-Whan;Lee, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2071-2078
    • /
    • 2009
  • In this paper, we proposed a non-contact respiration measurement system with ultrasonic proximity sensor. Ultrasonic proximity sensor approach of respiration measurement which respiration signatures and rates can be derived in real-time for long-term monitoring is presented. 240 kHz ultrasonic sensor has been applied for the proposed measurement system. The time of flight of sound wave between the transmitted signal and received signal have been used for a respiration measurement from abdominal area. Respiration rates measured with the ultrasonic proximity sensor were compared with those measured with standard techniques on 5 human subjects. Accurate measurement of respiration rate is shown from the 50 cm measurement distance. The data from the method comparison study is used to confirm the performance of the proposed measurement system. The current version of respiratory rate detection system using ultrasonic can successfully measure respiration rate. The proposed measurement method could be used for monitoring unconscious persons from a relatively close range, avoiding the need to apply electrodes or other sensors in the correct position and to wire the subject to the monitor. Monitoring respiration using ultrasonic sensor offers a promising possibility of non-contact measurement of respiration rates. Especially, this technology offers a potentially inexpensive implementation that could extend applications to consumer home-healthcare and mobile-healthcare products. Further advances in the sensor design, system design and signal processing can increase the range of the measurement and quality of the rate-finding for broadening the potential application areas of this technology.

A Kinetics Analysis of Forward 11/2 Somersault on the Platform Diving (플랫폼 다이빙 앞으로 서서 앞으로 11/2회전 동작의 운동역학적 분석)

  • Jeon, Kyoung-Kyu
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.209-218
    • /
    • 2013
  • This study was to perform the kinetic analysis of forward $1\frac{1}{2}$ somersault on the platform diving. Six men's diving players of the Korea national reserve athletes participated in this study. The variables were analyzed response time, velocity, center of mass (COM), angle, center of pressure (COP) and ground reaction force (GRF) of motion. For measure and analysis of this study, used to synchronized to 4 camcorder and 1 force plate, used to the Kwon3D XP (Ver. 4.0, Visol, Korea) and Kwon GRF (Ver. 2.0, Visol, Korea) for analyzed of variables. The results were as follows; Time factor were observed in maximum knee flexion depending on the extent of use at phase 1 of take-off to execute the somersault. This enabled the subject to secure the highest possible body position in space at the moment of jumping to execute the somersault and prepare for the entry into the water with more ease. Regarding the displacement of COM, all subjects showed rightward movement in the lateral displacement during technical execution. Changes in forward and downward movements were observed in the horizontal and vertical displacements, respectively. In terms of angular shift, the shoulder joint angle tended to decrease on average, and the elbow joints showed gradually increasing angles. This finding can be explained by the shift of the coordinate points of body segments around the rotational axis in order to execute the half-bending movement that can be implemented by pulling the lower limb segments toward the trunk using the upper limb segments. The hip joint angles gradually decreased; this accelerated the rotational movement by narrowing the distance to the trunk. Movement-specific shifts in the COP occurred in the front of and vertical directions. Regarding the changes in GRF, which is influenced by the strong compressive load exerted by the supporting feet, efficient aerial movements were executed through a vertical jump, with no energy lost to the lateral GRF.

Development of Effective Test Method for Positioning Accuracy of Armed Vehicle Inertial Navigation System (기동화력장비 관성항법장치의 효과적인 위치정확도 시험방법 개발)

  • Kim, Sung Hoon;Bae, In Hwa;Kim, Sang Boo
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.619-632
    • /
    • 2023
  • Purpose: The main function of INS (Inertial Navigation System) is to measure the position of an armed vehicle and its performance is confirmed through the positioning accuracy test of Korean Defense Standards (KDS). The current standards, however, do not provide clear test methods and the conditions for performing positioning accuracy tests. Accordingly, the purpose of this study is to develop a new method for positioning accuracy test which would be effective. Methods: In this study, a new INS positioning accuracy test method is suggested based on the analysis of test data collected through a statistical experiment known as central composite design. For the positioning accuracy experiment of K105A1, a self-propelled artillery, two factors of driving velocity and driving distance are considered. Results: Based on the analysis of experimental data, a regression model for the positioning error is fitted and the positioning accuracy test of INS is so developed to maximize the positioning error. The standard proximity rate is used as an additional test criterion to evaluate the performance level of INS. Conclusion: The proposed new positioning accuracy test for INS has the advantage of finding the nonconforming items effectively. It is also expected to be utilized for the other similar INS positioning accuracy tests.

The Observationi of User Behaviors of the Urban Plaza using Time-Lapse Record-A case study of Chungryangri Station Plaza- (Time-Lapse 촬영방법을 이용한 도심 광장의 이용행태에 관한 연구 -청량리 역광장을 사례로-)

  • 조창완;진양교
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.3
    • /
    • pp.199-212
    • /
    • 1998
  • The ultimate goal of this study can be summed up as follows: First, the utility of Time-Lapse that observes and records people's behavior will be shown and its merits and demerits will be discussed through comparing with other data-collecting methods such as the naked- eye observation, and the specific way in which Time-Lapse can be put to use will be suggested. Second, analysis of use behavior boserved in the plaza of Chungryangri station by Time-Lapse will be made, on the basis of which suggestions will be made concerning planing, designing, layout, and management of the station plaza. Time-Lapse can observe and records the plaza of Chungryangri Staton through 6 different ways of recording in Time-Lapse: 30 seconds, every minute, every two minutes, second every five minutes, every one tenth of a second, and every one fifth of a second, and these different ways of recording were analyzed through comparison from one to each other to check their respective utilities. And also analysis of tracks of pedestrians, density, and use behavior of users were made, according to which the way in which Time-Lapse can be utilized was examined. Several useful results obtained from this study are shown as follows. First, Time-Lapse made it possible to continuously observe for a long time using minimu efforts, and a single tape which is able to cover from 12 hours up to 25 days is useful for observing variation of behavior in space with the passage of time and seasons. Second, among six ways of recording, the recording every one tenth of a second and every one fifth of a second are useful for finding the tracks of pedestrians, the number of users, the member compositions, the time spent in one place, and manner of use. And besides the moving direction and its purpose can be recognized in a short time, which makes it possile to see where crossings of moving directions occur. Third, the recording every thirty seconds, every minute, every two minutes, and every five minutes are useful for analyzing the density in space as well as for finding the number of users and frequency of facilities use. In particular the recording every thirty seconds made it possible to keep the track of pedestrians' walking, and to observe even slowly moving motions such as cleaning. But when the recording interval exceeds one minute, this was not possible. Fourth, time-lapse has advantages over the naked eye observation in several respects. Time-lapse can measure observed behavior and density in terms of number, and locate the position of users. Time-Lapse, if accompanied by other methods such as interviewing and question that can examine psychological aspects like satisfaction or the purpose of use and be a useful device for space studies.

  • PDF

Upper Garment Sizing System for Obese School Boys Based on Somatotype Analysis (학령후기 비만 남아의 체형 분석에 따른 plus-size 남자 아동복 상의 치수 규격 제안)

  • Park, Soon-Jee
    • Journal of the Korean Home Economics Association
    • /
    • v.46 no.9
    • /
    • pp.99-112
    • /
    • 2008
  • The increasing rate of obesity in school aged children has become a conspicuous social phenomenon in Korea. This has been linked to greater economic growth, increasingly westernized dietary habits, and a consumer driven society. Given that obesity can lead to social exclusion or unfavorable attention by other students in a school setting, the design of plus-size garments have become important for effective appearance management skills. This research aimed to establish a somatotype database for obese school boys, aged 10 to 12, in order to develop a sizing system for plus-size upper garments. In order to measure somatotype of average and obese school boys, five categories were recorded; height, obesity, length of trunk, thickness of neck and chest. For obese boys, subcutaneous fat thickness and position of B.P/shoulder point factors were recorded. Obesity factor was subdivided into overall and specific ones, and while the deviation of obese body types was severe compared to the average type. Obese body type showed significantly higher measurements in width, girth, thickness. This is linked to the fact that the frequency ratio of obesity increases with age. Stature and chest were chosen as control dimensions for boys' wear. As crosstabulation of stature(5cm interval) and chest girth(2, 3 and 4cm), and stature(5cm interval)/chest girth(3cm interval) sizing system showed, the most effective cover ratio and adaptability to the data distribution $25{\sim}75$ quartile. Based on the findings, 10 sizes were formulated for average body type, while 18 sizes were formulated for obese type, whose size cover ratios were 48% and 62.9%, respectively. The primary ranges of stature were $145cm{\sim}150cm$, while those of chest girth were $79{\sim}82cm$. Each size was declared as "chest-somatotype{A(average)/O(obesity)-stature". This study proposed a plus-size upper garment sizing systems for obese boys, accompanied with reference measurements for suit, casual wear and underwear. The finding showed that the two systems were totally separate and not overlapping, meaning that plus-size sizing system is essential for obese school boys. The obesity type system had more size and wider range specs.