• Title/Summary/Keyword: Filtration resistance

Search Result 193, Processing Time 0.045 seconds

Influence of sludge solids content on sludge dewaterability using bioleaching

  • Wong, Jonathan W.C.;Zhou, Jun;Zhou, Lixiang;Kurade, Mayur B.;Selvam, Ammaiyappan
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.199-206
    • /
    • 2014
  • Dewatering is an extremely important step in wastewater treatment process to reduce the final sludge volume in order to minimize the cost of sludge transportation and disposal. In the present study, the effect of different sludge solids content (1, 2 and 3.8%) on the dewaterability of anaerobically digested sludge using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was studied. The pH reduction rate was higher during initial process in the sludge having low solids content, but after 48 h of bioleaching, similar pH of below 3 was observed with all the different solids content. Bio-oxidation rate of $Fe^{2+}$ was initially higher in sludge with low solids content, but 100% $Fe^{2+}$ was oxidized within 60 h in all the three treatment levels. Compared to the control, specific resistance to filtration was reduced by 75, 78 and 80% in the sludge with a solids content of 1, 2 and 3.8% respectively, showing improvement in dewaterability with an increase in sludge solids content. Sludge effluent quality and sludge settling rate were also improved in treatments with higher solids content after the bioleaching process.

The Study of Biofouling Control and Cause Material in Hybrid Process of Pure Oxygen and Submerged Membrane Bio-reactor (순산소 고율포기시스템 및 침지식 MBR융합공정에서 Biofouling 제어 및 원인물질 규명에 관한 연구)

  • Lee, Sang-Min;Kim, Mi-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.44-53
    • /
    • 2011
  • Membrane bio-reactor (MBR) has several advantages over the conventional activated sludge process, including a high biomass, low sludge production, and better permeate quality. Therefore, the MBR have gained popularity for municipal and industrial wastewater treatment. However the MBR usually were used for sewage and low streng th wastewater treatment because of membrane fouling problem and limitation of oxygen transfer into biomass. In this study, the hybrid process combining MBR and pure oxygen was tested for high strength organic wastewater treatment in the COD loading range from 2 to $10kgCOD/m^3{\cdot}day$. The hybrid process, membrane coupled pure oxygen high compact reactor (MPHCR), had been operated for one year and operation parameters, the effect of COD loading, MLSS concentration and the location of membrane module were studied for membrane fouling characteristic. Also membrane resistance test and the component of foulant was analyzed to investigate what is specific foulant in the MBR.

Resistance Functions of Woody Landscape Plants to Air Pollutants (I) - SOD Activity - (조경수목(造景樹木)의 대기오염물질(大氣汚染物質)에 대한 방어기능(防禦機能) (I) - SOD 활성(活性)을 중심으로 -)

  • Kim, Myung Hee;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.2
    • /
    • pp.164-176
    • /
    • 1992
  • This study was conducted to determine the toxic effects of air pollutants on landscaping trees, Pinus densiflora, Pinus koraierasis, Ginkgo biloba, Liriodeytdron tulipifera, Platanus occidentalis and their resistance to the pollutant toxicity in urban and industrial regions of Seoul and Taejon, Korea. Total sulfur content and superoxide dismutase activity were analysed in tree foliage of Pinus densiflora, Pinzes koraiensis, Ginkgo biloba, Liriodendron tulipifera, Platanus occidentalis. In addition, SOD activity was analyzed in the foliage of tree seedlings, i.e. Pinus densijlora, Pinus koraiensis, Ginkgo biloba, Liriodendron tulipifera, with the lurnigation of $SO_2$ in gas chamber 4 hours a day for six days. In all species total sulfur content and SOD activity had a positive correlation. Air pollutants accumulated in tree tissues were supposed to enhance the enzyme activity like SOD providing with the resistance mechanisms. Trees under the air pollution stress increased enzyme activity to develop internal self-resistance against pollutants, but after a critical point enzyme-activity decreased gradually and resulting in injury after all, Deciduous trees had greater filtration capacity than conifers and coniferous trees showed greater resistance against air pollutants than deciduous species. Foliage SOD activity was higher in polluted area than in unpolluted area for most species. Coniferous species and mature trees had higher SOD activity than deciduous seedlings. Especially Pinus koraiensis, Ginkgo biloba and Plcatanus occidentalis had higher SOD activity than other species. The tree species with the high SOD activity showed strong resistance against air pollutants. In 2nd-year needles of Pinus densiflora seedlings and current and 2nd-year needles of Pinus koraiensis seedlings containing high native SOD activity, SOD activity increased with the increase of $SO_2$ level. But in seedlings containing low native SOD activity, SOD activity increased at 0.5ppm $SO_2$ level while it decreased at 1.5 and 2.5ppm $SO_2$. Changes of SOD activity was different between species and in most species SOD seemed to participate in resistance mechanism.

  • PDF

Fouling Study with Binary Protein Mixtures in Microfilration (이성분계 단백질 혼합물의 미세막 분리공정에서 막오염에 관한 연구)

  • Ahn, Byung Hun;Moon, Dong Ju;Yoo, Kye Sang;Ho, Chia Chi
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.236-242
    • /
    • 2005
  • Membrane fouling by protein mixtures during microfiltration has been investigated for binary mixtures of bovine serum albumin (BSA), casein, lysozyme, pepsin, and ovalbumin. Filtration experiments were carried out using $0.2{\mu}m$ polycarbonate track-etched (PCTE) membrane in a stirred cell under constant transmembrane pressure (14 kPa) and concentration of hydrogen ion (pH=11) to study the effect of mixture composition on filtrate flux decline. Flux decline data were analyzed using a pore blockage-cake formation model developed recently. It was found that the model is in a good agreement with the experimental data. Fouling parameters such as the rate of pore blockage(${\alpha}$), the initial resistance of the protein deposit ($R_{po}$) and the increasing rate of the protein layer resistance(${\beta}$) were used to evaluate the rate of filtrate flow by membrane fouling in the binary mixture system. Generally, the trend of ${\alpha}$ is comparable with that of filtrate flux decline. It was also found that fast flux decreasing was observed over the binary mixture containing casein. The result is due to high value of the initial resistance of the protein deposit ($R_{po}$) over casein.

Effect of electrocoagulation on sludge characteristics in EC-MBR (EC-MBR에서 전기응집이 슬러지 특성에 미치는 영향)

  • Um, Se-Eun;Chang, In-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.42-49
    • /
    • 2017
  • The application of electro-coagulation has been attempted to control the membrane fouling problem in a MBR (Membrane Bio-Reactor). This study examined the effects of the operating parameters (current density and contact time) of the electro-coagulation process on the change in the characteristics of activated sludge. The current density changed from 2.5 to 12, $24A/m^2$, and the contact time was varied from 0 to 2 and 6 hr, respectively. At a current density of $24A/m^2$ and 6 hr of operation, the MLSS changed from 6,800 to 7,000 mg/L (3% increase), but the MLVSS did not increase significantly. After 6 hr of operation, the soluble COD decreased from 71 to 37 mg/L under the $24A/m^2$ condition, from 113 to 67 mg/L under the $12A/m^2$ condition, and from 84 to 80 mg/L under the $2.5A/m^2$ condition. On the other hand, soluble-TN and -TP concentration showed slight changes. The soluble-EPS and Bound-EPS concentration decreased slightly with increasing current density. The membrane filtration performance of activated sludge before and after electro-coagulation was compared. The filtration resistances after electro-coagulation decreased from 6 to 61 %, particularly as the current density and contact time were increased. This indicates that electro-coagulation can be used to control membrane fouling in the MBR process.

Characterization of Pseudomonas sp. MN5 and Purification of Manganese Oxidizing Protein (Pseudomonas sp. MN5의 특성과 망간산화단백질 정제)

  • Lee, Seung-Hui;Park, Kyeong-Ryang
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.84-90
    • /
    • 2008
  • Bacterial colonies which were able to oxidize the manganese were isolated from six soil samples in Byungchon area. Among them, one bacterial strain was selected for this study based on its high manganese oxidation activity. This selected bacterial strain was identified as Pseudomonas sp. MN5 through physiological-biochemical test and analysis of its 16s rRNA sequence. This selected bacterial strain was able to utilize fructose and maltose, but they doesn't utilizing various carbohydrates as a sole carbon source. Pseudomonas sp. MN5 showed a very sensitive to antibiotics such as kanamycin, chloramphenicol, streptomycin and tetracycline, but a high resistance up to mg/ml unit to heavy metals such as lithium, manganese and barium. Optimal manganese oxidation condition of Pseudomonas sp. MN5 was pH 7.5 and manganese oxidation activity was inhibited by proteinase K and boiling treatment. The manganese oxidizing protein produced by Pseudomonas sp. MN5 was purified by ammonium sulfate precipitation, HiTrap Q FF anion exchange chromatography and G3000sw $_{XL}$ gel filtration chromatography. By sodium dodecyl sulfate polyacrylamide gel electrophoresis, three manganese oxidizing protein with estimated molecular weights of 15 kDa, 46.7 kDa and 63.5 kDa were detected. Also, it was estimated that manganese oxidizing protein produced by Pseudomonas sp. MN5 were a kind of porin proteins through internal sequence and N-terminal sequence analysis.

Enhanced Dewaterability of Sewage Sludge by a Natural Inorganic Conditioner (무기개량제를 이용한 하수슬러지의 탈수능 개선)

  • Nam, Se-Yong;Kim, Jeong-Ho;Kim, Sang-Hyoun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.651-655
    • /
    • 2012
  • This study aimed to investigate the effect of an inorganic conditioner composed of natural inorganic materials on the dewaterbility of sewage sludge and compare the performance with those of conventional organic polymeric conditioners. A dosage of 2.0 mg inorganic conditioner/g sludge TS decreased time to filter test (TTF), specific resistance to filtration (SRF), water content of dewatered sludge cake, turbidity from 146 to 41 sec, from $8.3{\times}10^{14}$ to $2.4{\times}10^{14}$ m/kg, from 82.1 to 77.1%, from 112 to 61.1 NTU, respectively, which was compatible to the conventional cation organic polymer. An inorganic conditioner would be used in sewage sludge treatment as a suitable alternative conditioner. Regression analysis showed a strong relationship among TTF, SRF, and water content.

Factors Affecting Membrane Fouling in Membrane Filtration of Activated Sludge (막결합형 활성슬러지 시스템에서의 막오염 유발 인자)

  • Chang, In-Soung;Lee, Chung-Hak
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.323-329
    • /
    • 2000
  • The coupling of an activated sludge reactor with a membrane unit, i.e., Membrane Coupled Activated Sludge (MCAS) system offers several advantages over conventional process. But the major hurdle in the extensive use of this process is the continuous reduction of permeation flux caused by membrane fouling. The aim of this study is to investigate membrane fouling characteristics in the MCAS process. During crossflow ultrafiltration(CFUF) of activated sludge, floc size decreased abruptly at the beginning of operation and thereafter decreased continuously and gradually. The floc size changed from 100~200 to $6{\sim}8{\mu}m$ depending on recirculation velocity. This floc breakage played a key role in rapid increase of $R_c$(cake layer resistance), which led to flux decline. The floc breakage stimulated biomass to release EPS(Extracellular Polymeric Substance) which has been known to be one of the major membrane foul-ants. The amounts of EPS before and after CFUF were 266 and 405(VS mg/MLSS g), respectively. The rise up of EPS concentration was another factor affecting flux decline in MCAS system.

  • PDF

Effect of Chemical Conditioning on Flotation and Thickening Efficiencies of Sewage Sludge (화학적인 개량이 하수슬러지의 부상농축효율에 미치는 영향)

  • Lee, Chang-Han;Ahn, Kab-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.743-748
    • /
    • 2009
  • Chemical sludge conditioning is widely used to improve the dewatering efficiency. It is treated with commonly used conditioners, and then thickened and dewatered with a mechanical device. This paper aims to examine the flotation and thickening efficiencies of sewage sludge for conditioning conditions, such as unaerobic storage time, kinds of coagulant and dosages, and flotation conditions, such as sludge concentration and A/S ratio, using an dissolved air flotation apparatus. Experimental results showed that the specific surface area and specific resistance to filtration (SRF) were significantly increased and the flotation and thickening efficiencies were decreased with anaerobic storage time. However, the flotation and thickening efficiencies faintly decreased in sewage sludges conditioned as $Al_2(SO_4)_3$, $Fe_2(SO_4)_3$, and PSO-M. Flotation and thickening efficiencies in conditioned sewage sludge could be sustained up to 96% at A/S ratio of 0.01 mL/mg or over.

Effects of Media Breakage on Infiltration Characteristics in Stormwater Management System (강우유출수 처리시설 침투특성에 대한 필터여재 파쇄의 영향)

  • Segismundo, Ezequiel Q.;Koo, Bon-Hong;Kim, Lee-Hyung;Lee, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.2
    • /
    • pp.31-41
    • /
    • 2016
  • For sand and zeolite filter media in stormwater BMPs, media breakage effects on infiltration were investigated. Compaction effort and infiltration force were mainly examined for breakage sources. The 1-D column infiltration tests for un-compacted and compacted media filters were conducted to investigate the breakage effect on infiltration. As a result, the following findings were deduced: 1) particle breakage due to filtration forces was found to be relatively minimal; 2) un-compacted media had lesser amount of crushed particles and permeability fluctuations compared to compacted media; 3) even without the presence of suspended solids in the influent, reduction in permeability was found, which resulted from rearrangement and re-entrainment of media particle itself; 4) only media particle breakage resistance is considered, sand was revealed to have better performance compared to zeolite media.