• Title/Summary/Keyword: Filter-based technique

Search Result 699, Processing Time 0.025 seconds

Ground Experiment of Spacecraft Attitude Control Using Hardware Testbed

  • Oh, Choong-Suk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.75-87
    • /
    • 2003
  • The primary objective of this study is to demonstrate ground-based experiment for the attitude control of spacecraft. A two-axis rotational simulator with a flexible ann is constructed with on-off air thrusters as actuators. The simulator is also equipped with payload pointing capability by simultaneous thruster and DC servo motor actuation. The azimuth angle is controlled by on-off thruster command while the payload elevation angle is controlled by a servo-motor. A thruster modulation technique PWM(Pulse Width Modulation) employing a time-optimal switching function plus integral error control is proposed. An optical camera is used for the purpose of pointing as well as on-board rate sensor calibration. Attitude control performance based upon the new closed-loop control law is demonstrated by ground experiment. The modified switching function turns out to be effective with improved pointing performance under external disturbance. The rate sensor calibration technique by Kalman Filter algorithm led to reduction of attitude error caused by the bias in the rate sensor output.

A Method for Selecting the Subwindows of Pseudomedian Filter for Digital Image Enlargement (디지털 영상 확대를 위한 Pseudomedian 필터의 부윈도우 설정 방법)

  • Kwak, No-Yoon;Kwon, Byong-Heon;Hwang, Byong-Won
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.9
    • /
    • pp.91-102
    • /
    • 1999
  • It is known that the digital image enlargement technique which only uses spatially neighbored pixels information in a still image can increase the size of the image but the practical enhancement of resolution is small because the frequency bandwidth of the image is basically limited. To solve this problem, this paper proposes the digital image enlargement technique that improves the reconstruction of the edge components by selectively transposing the direction of the subwindows of pseudomedian filter according to the distribution of neighbored pixels to the interpolation point. The pseudomedian filter has the better performance in aspect of the reconstruction of edge information when the pixel values masked by two subwindows parallel to the interpolation point are very similar and the pixel values masked by another subwindow that is orthogonal to the above two subwindows are similar to each other. In this paper, the computer simulation for digital image enlargement was performed with consideration of these characteristics when selecting the subwindows of pseudomedina filter. Based on this simulation result, the performance of the proposed method was analysed and its effectiveness was assessed. According to the proposed method, visual artifacts that result from using the limited samples can be effectively suppressed, and most characteristics and shapes of the original image can be preserved as well.

  • PDF

Validation of model-based adaptive control method for real-time hybrid simulation

  • Xizhan Ning;Wei Huang;Guoshan Xu;Zhen Wang;Lichang Zheng
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.259-273
    • /
    • 2023
  • Real-time hybrid simulation (RTHS) is an effective experimental technique for structural dynamic assessment. However, time delay causes displacement de-synchronization at the interface between the numerical and physical substructures, negatively affecting the accuracy and stability of RTHS. To this end, the authors have proposed a model-based adaptive control strategy with a Kalman filter (MAC-KF). In the proposed method, the time delay is mainly mitigated by a parameterized feedforward controller, which is designed using the discrete inverse model of the control plant and adjusted using the KF based on the displacement command and measurement. A feedback controller is employed to improve the robustness of the controller. The objective of this study is to further validate the power of dealing with a nonlinear control plant and to investigate the potential challenges of the proposed method through actual experiments. In particular, the effect of the order of the feedforward controller on tracking performance was numerically investigated using a nonlinear control plant; a series of actual RTHS of a frame structure equipped with a magnetorheological damper was performed using the proposed method. The findings reveal significant improvement in tracking accuracy, demonstrating that the proposed method effectively suppresses the time delay in RTHS. In addition, the parameters of the control plant are timely updated, indicating that it is feasible to estimate the control plant parameter by KF. The order of the feedforward controller has a limited effect on the control performance of the MAC-KF method, and the feedback controller is beneficial to promote the accuracy of RTHS.

Design and Implementation of Solar PV for Power Quality Enhancement in Three-Phase Four-Wire Distribution System

  • Guna Sekar, T.;Anita, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.75-82
    • /
    • 2015
  • This paper presents a new technique for enhancing power quality by reducing harmonics in the neutral conductor. Three-Phase Four-Wire (3P4W) system is commonly used where single and three phase loads are connected to Point of Common Coupling (PCC). Due to unbalance loads, the 3P4W distribution system becomes unbalance and current flows in the neutral conductor. If loads are non-linear, then the harmonic content of current will flow in neutral conductor. The neutral current that may flow towards transformer neutral point is compensated by using a series active filter. In order to reduce the harmonic content, the series active filter is connected in series with the neutral conductor by which neutral and phase current harmonics are reduced significantly. In this paper, solar PV based inverter circuit is proposed for compensating neutral current harmonics. The simulation is carried out in MATLAB/SIMULINK and also an experimental setup is developed to verify the effectiveness of the proposed method.

Attitude Determination for Gyroless Spacecraft Using Reaction Wheels (반작용휠을 이용한 자이로 미탑재 위성의 자세결정 기법)

  • Park, Seong-Yong;Kim, Young-Ouk;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.853-861
    • /
    • 2016
  • This paper deals with a new technique utilizing the angular speed of the reaction wheels to determine attitudes and angular rates for gyroless satellites. The suggested algorithm in this study is designed to determine the precise attitude and angular rates under actual space environments by the support of the angular speeds of reaction wheels based on the extended Kalman filter. Furthermore, the proposed approach is also designed to estimate not only the attitude and angular rates of spacecraft but the external disturbances. The numerical simulation was conducted for gyloless spacecraft installed with four reaction wheels of the pyramid-type configuration. The performance of the proposed algorithm is verified by using numerical simulations.

Ultrasound Harmonic Imaging Method based on Harmonic Quadrature Demodulation (하모닉 직교 방식의 초음파 고조파 영상화 기법)

  • Kim, Sang-Min;Song, Jae-Hee;Song, Tai-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.79-88
    • /
    • 2009
  • A harmonic quadrature demodulation method to extract the second harmonic component from focused ultrasound signals after a single transmit-receive event is proposed. In the proposed method, the focused ultrasound signal is converted into baseband inphase and quadrature components by multiplying with sine and cosine signals both having twice the center frequency of the transmitted signal and filtering the two modulated signals. The quadrature component is then passed through a Hilbert filter to be added to the inphase component, which leaves only the envelope of the second harmonic component. A novel phase estimation technique is employed in the proposed method to avoid the phase mismatch between the focused signal and the two modulating signals. The proposed method is verified through both theoretical analysis and computer simulations. It is shown that compared to the pulse inversion scheme the proposed method provides almost the same results for stationary targets and significantly improved harmonic to fundamental ratio for moving targets.

A Study on the Synthesis of Dielectric Constant Potential for Arbitrary Inverse Scattering Pattern Using an Iterative Sampling Method (반복 샘플링법을 사용한 임의 역산란 패턴을 위한 유전율 포텐셜 합성에 관한 연구)

  • 남준석;박의준
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.10
    • /
    • pp.150-158
    • /
    • 2003
  • In the beam pattern synthesis problem using line source, the relationship between source distribution function and beam pattern may be represented by Fourier transform pair. In this paper, a general method to synthesize the line source distribution for a desired lobe-like beam pattern is presented by developing the nonlinear inversion method based on an iterative sampling technique. This method can be applied to the synthesis of continuously distributed dielectric constants satisfying the desired inverse scattering coefficient patterns when illuminating by TE-polarized and TM-polarized plane waves to arbitrary dielectric material. Furthermore this method can also be applied to the synthesis of transmission line with arbitrary reflection coefficient patterns. Some bandstop spatial filter and dispersive transmission line filter are illustrated for generality.

Advanced Frequency Estimation Technique using Gain Compensation (이득 보상에 의한 개선된 주파수 추정 알고리즘)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.173-178
    • /
    • 2010
  • Frequency is an important operating parameter of a power system. Due to the sudden change in generation and loads or faults in power system, the frequency is supposed to deviate from its nominal value. It is essential that the frequency of a power system be maintained very close to its nominal frequency. And monitoring and an accurate estimation of the power frequency by timing synchronized signal provided by FDR is essential to optimum operation and prevention for wide area blackout. As most conventional frequency estimation schemes are based on DFT filter, it has been pointed out that the gain error by change in magnitude could cause the defects when the power frequency is deviated from nominal value. In this paper, an advanced frequency estimation scheme using gain compensation for fault disturbance recorders (FDR) is presented. The proposed scheme can reduce the gain error caused when the power frequency is deviated from nominal value. Various simulation using both the data from EMTP package and user's defined arbitrary signals are performed to demonstrate the effectiveness of the proposed scheme. The simulation results show that the proposed scheme can provide better accuracy and higher robustness to harmonics and noise under both steady state tests and dynamic conditions.

Fast Envelope Estimation Technique for Monitoring Voltage Fluctuations

  • Marei, Mostafa I.;Shatshat, Ramadan El
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.445-451
    • /
    • 2007
  • Voltage quality problems such as voltage sag, swell, flicker, undervoltage, and overvoltage have been of great concern for both utilities and customers over the last decade. In this paper, a new approach based on the $H_{\infty}$ algorithm to monitor voltage disturbances is presented. The key idea of this approach is to estimate the amplitude of the fundamental component of distorted and noisy voltage waveform instantaneously, and then the information can be extracted from the estimated envelope to identify and classify different voltage related power quality problems. The $H_{\infty}$ algorithm is characterized by a fast tracking, unlike that of existing techniques. The $H_{\infty}$ algorithm outperforms the Kalman Filter (KF) by its fast convergence and robust tracking performance against non-Gaussian noise. The paper investigates the effects of various types of noise on the performance of the $H_{\infty}$ algorithm. Digital simulation results confirm the validity and accuracy of the proposed method. The proposed $H_{\infty}$ algorithm is examined by tracking the flicker produced by a resistance welder simulated in the PSCAD/EMTDC package.

INS/Multi-Vision Integrated Navigation System Based on Landmark (다수의 비전 센서와 INS를 활용한 랜드마크 기반의 통합 항법시스템)

  • Kim, Jong-Myeong;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.671-677
    • /
    • 2017
  • A new INS/Vision integrated navigation system by using multi-vision sensors is addressed in this paper. When the total number of landmark measured by the vision sensor is smaller than the allowable number, there is possibility that the navigation filter can diverge. To prevent this problem, multi-vision concept is applied to expend the field of view so that reliable number of landmarks are always guaranteed. In this work, the orientation of camera installed are 0, 120, and -120degree with respect to the body frame to improve the observability. Finally, the proposed technique is verified by using numerical simulation.