• Title/Summary/Keyword: Filter-Adsorber(F/A)

Search Result 3, Processing Time 0.02 seconds

Evaluation of Filter-Adsorber(F/A) Process for Removal of Disinfection By-products(DBPs) (소독부산물 제어를 위한 실공정 F/A 운영에 관한 고찰)

  • Kim, Seong-Su;Lee, Kyung-Hyuk;Lim, Jae-Lim;Chae, Seon-Ha;Kang, Byeong-Soo;Moon, Pil-Joong;Ahn, Hyo-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1035-1042
    • /
    • 2005
  • Granular Activated Carbon(GAC) is widely used in drinking water treatment. At S and B Water Treatment Plant, GAC is used in place of granular media in conventional rapid filters(GAC Filter-Adsorber) for removal of Disinfection By-products(DBPs). The primary focus of this study is on the performance of existing filter-adsorber, and their operation. It was found that F/A process removed turbidity as effective as sand system. The ratio of Hydrophobic DOM (HPO) and hydrophilic DOM (HPI) fraction in the raw water at S and B WTP was similar. Filter Adsorber presented earlier DOC breakthrough and steady state condition which was contributed by biodegradation during operation period. The removal efficiency of DBPs were used to evaluate the filter performance. The DBPs concentration of F/A treated water was below treatment goal level (THM < $80\;{\mu}g/L$, HAA < $60{\mu}g/L$). The removal efficiency of THM decreased rapidly during operation period. However, HAA were removed steadily regardless of the influent concentration of HAA. These results indicate that the removal of THM depend upon the adsorption mechanism while the removal of HAA depend upon biodegradation as well as adsorption. The decrease of adsorption capacity and characteristic value of GAC may be attributed to the effect of high organic loading, residual free chlorine, coagulants, manganese oxidants and frequently backwashing. This study has confirmed that Filter adsorber process can be considered as effective alternatives for the removal of DBPs, especially HAA.

Evaluation on Filter/Adsorber Granular Activated Carbon using in Advanced Drinking Water Treatment: Abrasion number, Floater, Water-soluble ash, and Adsorption characteristics (고도정수처리용 Filter/Adsorber Granular Activated Carbon 특성 평가: 마모지수, floater, water-soluble ash 및 흡착특성 평가)

  • Park, Byeong-Joo;Do, Si-Hyun;Kim, Tae-Yang;Hong, Seong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.77-85
    • /
    • 2016
  • The characteristics of filter/adsorber granular activated carbon (F/A GAC) were investigated by measuring various parameters, which include surface area, pore volume, abrasion number, floater, and water-soluble ash. The correlation between parameters was also evaluated. Moreover, rapid small-scale column test (RSSCT) was conducted for adsorption characteristics. Thirteen F/A GAC were tested, and the average values of abrasion number and water-soluble ash were 88.9 and 0.15%, respectively. F/A GAC with the larger external surface area and greater mesopore volume had the lower abrasion number, which indicated that it was worn out relatively easily. Water-soluble ash of coconut-based GAC (about 2.6%) was greater than that of coal-based GAC (less than 1%), and the pH of solution was increased with GAC, which had the higher water-soluble ash. On the other hand, floater of thirteen F/A GAC was divided as two groups, which one group had relatively higher floater (2.7~3.5%) and the other group had lower floater (approximately 0.5%). The results of RSSCT indicated that coconut-based GAC (i.e. relatively higher water-soluble ash) had less adsorption capacity. Moreover, adsorption capacity of coal-based GAC with larger surface area and greater mesopore volume was superior to others.

Effect of Ozonation on Removal of Dissolved Organic Matter by Granular Activated Carbon Process (오존공정이 입상활성탄공정에서 용존유기물질의 제거에 미치는 영향)

  • Ahn, Hyo-Won;Chae, Seon-Ha;Wang, Chang-Keun;Lim, Jae-Lim
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.601-608
    • /
    • 2008
  • The objective of this study was to evaluate the effect of ozonation as pretreatment on the removal of dissolved or biodegradable organic matter(DOM or BOM), the variance of DOM fractionation, and microbial regrowth by pilot-scale granular activated carbon processes in which adsorption and biodegradability was proceeding due to long time operation. Regardless of point of ozonation applied, GAC processes with ozonation(i.e., Ozonation combined with GAC Filter-adsorber; Pre O$_3$ + F/A, Ozonation combined with GAC adsorber; Post O$_3$ + GAC) compared with GAC processes without ozonation(i.e., GAC Filter-adsorber; F/A, GAC adsorber; GAC) removed approximately 10 to 20% more of DOC, hydrophilic DOM(HPI), BDOC and AOC after long period of operation that biological activity was assumed to happen. Ozonation was not found to have a significant effect on the removal of DOC, but caused the decrease of AOC by approximately 20%. It was found that the fixed bacterial biomass on GAC media did not show a significant difference between the GAC with ozonation and GAC without ozonation as pre-treatment, whereas the HPC of column effluent was more biostable at Post O$_3$ + GAC compared with F/A or GAC.