• Title/Summary/Keyword: Filmwise Condensation

Search Result 12, Processing Time 0.014 seconds

Condensation Heat Transfer Characteristics of R-134a with Wall Thickness and Surface Roughness on Stainless Steel Horizontal Plain Tubes (스테인리스 평활관의 관 두께 및 표면거칠기에 따른 R-134a 의 관외측 응축 열전달 특성 연구)

  • Heo, Jae-Hyeok;Yun, Rin;Lee, Yong-Taek;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1203-1210
    • /
    • 2006
  • The filmwise condensation heat transfer coefficients of R-134a on the horizontal copper and stainless steel tubes were measured and analyzed. The outside diameter of the tubes was 15.88 mm, and the tube thickness ranged from 0.89 to 1.65 mm. The polished stainless steel tube had an RMS surface roughness($R_q$) of 0.37 $\mu$m, and commercial stainless steel tubes had an surface roughness($R_q$) of 1.855 $\mu$m. The tests were conducted at the saturation temperatures of 20 and $30^{\circ}C$, and the liquid wall subcoolings from 0.4 to $2.1^{\circ}C$. The measured condensation heat transfer coefficients were significantly lower than the predicted data by the Nusselt analysis. This trend in the stainless steel tube was explained by the effects of thermal resistance of tube material and surface roughness. Based on the experimental data with respect to wall thickness and surface roughness, it was suggested that the existing correlation on external condensation should be modified by considering material and surface roughness factors. The revised correlation was developed by introducing the effects of wall thickness and surface roughness into the Nusselt equation. The average deviation of the revised correlation was 13.0 %.

A Study on Heat Transfer Coefficient of a Perfluorocarbon Heat Pipe (Perfluorocarbon 히트파이프의 열전달 계수에 관한 연구)

  • 강환국;김철주;김재진
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.194-201
    • /
    • 1998
  • In electric commuter trains using AC motors, lots of GTO thyristors and diodes are needed for power controls. These semiconductors generate heat about 1~2 kW, and for cooling which perfluorocarbon(PFC) heat pipes have been in use for the last two decades. The present study was investigated on the effects of such important design parameters as structure of internal surface (grooved or smooth), fill charge ratio, and inclinating angle from a vertical on heat transfer coefficients at both evaporators and condensers. To obtain experimental data, several heat pipes of the same geometry of 520 mm long and diameter of 15.88 mm but different in fill charge ratio and internal surface structure were designed and fabricated. For prediction of the heat transfer coefficients, related expressions were examined and the results of calculations were compared with experimental data. Performance tests were conducted while heat pipes operated at mode of thermosyphons. High enhancements of heat transfer coefficient were obtained internal grooves. In these cases, the evaporating heat transfer coefficients distributed in the range of 2~5.5 kW/$m^2$K, with an increase of heat flux from 15~45 kW/$m^2$. These experimental data were in good agreement with Rohsenow's expression based on nucleate boiling when correction factor $C_R$=1.3 was encountered. In addition, the condensation heat transfer coefficients were distributed from 1.5 to 3.5 kW/$m^2$K, and the data were in good agreements with Nusselt's correlation, based on filmwise condensation on vertical plate, when choosing a correction factor $C_N=4$. A fill charge ratio of 40~100% were recommended, and the in clination angle effects were negligible when the angle was higher then 30$^{\circ}$.

  • PDF