• 제목/요약/키워드: Film-Cooling Effectiveness

검색결과 68건 처리시간 0.021초

Measurement of the Film Cooling Effectiveness on a Flat Plate using Pressure Sensitive Paint

  • Park, S.D.;Lee, K.S.;Kwak, J.S.;Cha, B.J.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.53-58
    • /
    • 2008
  • Film cooling effectiveness on a flat plate was measured with pressure sensitive paint. The pressure sensitive paint(PSP) changes the intensity of its emissive light with pressure and the characteristic was used in film cooling effectiveness measurement. The film coolants were air and nitrogen, and by comparing the intensity of PSP coated surface with each coolant, the film cooling effectiveness was calculated. Three blowing ratio of 0.5, 1, and 2 were tested with two mainstream turbulence intensities. Results clearly showed the effect of blowing ratio and mainstream turbulence intensity. As the blowing ratio increases, the film cooling effectiveness was decreased near the film cooling holes. However, the film cooling effectiveness far downstream from the injection hole was higher for higher blowing ratio. As the mainstream turbulence intensity increased, the film cooling effectiveness was decreased at far downstream from the injection hole.

  • PDF

이중분사 막냉각 홀의 측면 분사각 및 홀 사이의 거리가 막냉각 효율에 미치는 영향 (Effects of the Lateral Ejection Angles and Distances of Double-Jet Holes on Flim Cooling Effectiveness)

  • 최대웅;이기돈;김광용
    • 한국유체기계학회 논문집
    • /
    • 제15권4호
    • /
    • pp.33-41
    • /
    • 2012
  • In the present work, a parametric study on double-jet film-cooling has been carried out to enhance the film-cooling effectiveness using three-dimensional Reynolds-averaged Navier-Stokes analysis. The shear stress transport turbulence model is used as the turbulence closure. The lateral ejection angles and the lateral and streamwise distance between the centers of the cooling holes are chosen as the geometric parameters. The spatially averaged film-cooling effectiveness averaged over an area of 8 hole diameters in width and 30 hole diameters in streamwise length is used to evaluate the performance of film-cooling. The parameter of the lateral distance has the largest impact on the film cooling effectiveness compared to the others. On the other hand, the parameter of streamwise distance gives the least influence on the film cooling effectiveness.

Experimental Study on the Film Cooling Effectiveness on a Flat Plate with Anti-Vortex Holes

  • Park, Soon Sang;Park, Jung Shin;Kwak, Jae Su
    • International Journal of Aerospace System Engineering
    • /
    • 제1권1호
    • /
    • pp.1-9
    • /
    • 2014
  • In this paper, the effects of the anti-vortex hole angle and blowing ratio on the flat plate film cooling effectiveness were experimentally investigated. For the film cooling effectiveness measurement, pressure sensitive paint technique was applied. The experiments were conducted for cylindrical and anti-vortex film cooling holes, and three blowing ratios of 0.25, 0.5, and 1.0 were tested. Two anti-vortex hole angles of 0 and 15 degree with respect to the flow direction were considered. For the cylindrical hole case, the film cooling effectiveness decreased as the blowing ratio increased because of the coolant lift-off. For the angle anti-vortex hole cases, however, higher blowing ratio resulted in higher film cooling effectiveness due to the reduced actual blowing ratio and diminished kidney vortex. For all blowing ratio, the angled anti-vortex hole case showed the highest film cooling effectiveness.

샤워헤드 막냉각면에서의 온도장 및 막냉각효율 측정 (Measurements of Temperature Field and Film-Cooling Effectiveness for a Shower-Head Film Cooling)

  • 정철희;이상우
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.177-187
    • /
    • 2000
  • Measurements of temperature fields and film-cooling effectiveness have been conducted for a shower-head film cooling on the leading edge of a blunt body, which simulates a first-stage turbine stator. In this study, three injection cases are employed for an average blowing ratio based on freestream velocity, M, of 0.5, 1.0 and 1.5. Two (Case 1), four (Case 2) and six (Case 3) rows of normal holes are symmetrically drilled on the three tested circular-cylinder leading edges. The measurements show that regardless of M, the film-cooling effectiveness increases as the injection row is situated at farther downstream location. In Case 1, the film-cooling effectiveness is highest for M = 0.5 and lowest for M = 1.5. On the contrary, in Case 3, the film-cooling effectiveness is highest for M = 1.0 and lowest for M = 0.5. When M = 0.5, the film coverage by the first row of the injection holes deteriorates as the number of the injection row increases. In particular, the film-cooling effectiveness due to the injection through the first row of the holes in Case 3, has a nearly zero value.

PSP를 이용한 15° 반와류 홀과 30-7-7 팬형상 홀의 막냉각 효율 비교 연구 (Comparative Study on the Film Cooling Effectiveness of 15° Angled Anti-Vortex Hole and 30-7-7 Fan-Shaped Hole Using PSP Technique)

  • 김예지;박순상;이동호;곽재수
    • 한국유체기계학회 논문집
    • /
    • 제19권4호
    • /
    • pp.13-18
    • /
    • 2016
  • The various film cooling hole shapes have been proposed for effective external cooling of gas turbine blade. In this study, the film cooling effectiveness by three different hole shapes (cylindrical hole, $15^{\circ}$ angle anti-vortex hole, 30-7-7 fan-shaped hole) were examined experimentally. Pressure Sensitive Paint (PSP) technique was used to measure the film cooling effectiveness. The coolant to mainstream density ratio was 1.0 and three blowing ratios of 0.5, 1.0, and 2.0 were considered. Results clearly showed that the effect of hole shape on the distribution of film cooling effectiveness. For the cylindrical hole case, the film cooling effectiveness decreased remarkably as the blowing ratio increased due to the jet lift off. Because of large hole exit area and low coolant momentum, the 30-7-7 fan-shaped hole case showed the highest film cooling effectiveness at all blowing ratio, followed by the anti-vortex hole case.

압력감응페인트를 이용한 확대/축소 유로에서의 막냉각 효율 측정 (Measurement of the Film Cooling Effectiveness using Pressure Sensitive Paint on Convergent/Divergent Channel)

  • 박승덕;이기선;김성하;김학봉;곽재수;김춘택;양계병
    • 한국유체기계학회 논문집
    • /
    • 제11권6호
    • /
    • pp.31-37
    • /
    • 2008
  • Film cooling effectiveness on the convergent or divergent channel was measured by pressure sensitive paint technique. The channel convergent or divergent angle was changed from $-5^{\circ}$ to $10^{\circ}$ and the tested blowing ratios were 0.5, 1 and 2. Results showed that the film cooling effectiveness on the convergent channel was not much affected by the convergent angle. With divergent film cooled surface, the film cooling effectiveness near the injection hole decreased as the divergent angle increases. However, the film cooling effectiveness at far downstream from the hole showed opposite trend. For the non-film cooled surface inclined case, the film cooling effectiveness was not much affected by the divergent angle.

다양한 막냉각 홀 형상에 대한 막냉각 효율의 수치해석 (NUMERICAL STUDY ON FILM-COOLING EFFECTIVENESS FOR VARIOUS FILM-COOLING HOLE SCHEMES)

  • 김선민;이기돈;김광용
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.92-99
    • /
    • 2011
  • In order to protect the turbine blade from working fluid of high temperature, many cooling techniques such as internal convection cooling, film cooling, impinging jet cooling and thermal barrier coating have been developed. With all other things, film-cooling has been widely used as the important alternative. In the present work, numerical analysis has been performed to investigate and to compare the film-cooling performance of various film-cooling hole schemes such as cylindrical, crescent, louver, and dumbbell holes. To analyze the turbulent flow and the film-cooling mechanism, three-dimensional Reynolds-averaged Navier-Stokes analysis has been performed with shear stress transport turbulence model. The validation of numerical results has been assessed in comparison with experimental data. The characteristics of fluid flow and the film-cooling performance for each shaped hole have been investigated and evaluated in terms of centerline, laterally averaged and spatially averaged film-cooling effectivenesses. Among the film cooling holes, the dumbbell shaped hole shows better film-cooling effectiveness than the other shaped holes. And the louver and cylindrical shaped hole show the worst film cooling performance, and concentrated flows on near the centerline only.

변형된 단일 막냉각홀 주위에서의 열/물질전달 및 막냉각효율 특성 (Characteristics of Heat/Mass Transfer and Film Cooling Effectiveness Around a Shaped Film Cooling Hole)

  • 이동호;김병기;조형희
    • 대한기계학회논문집B
    • /
    • 제23권5호
    • /
    • pp.577-586
    • /
    • 1999
  • Two problems with jet injection through the cylindrical film cooling hole are 1) penetration of jet into mainstream rather than covering the surface at high blowing rates and 2) nonuniformity of the film cooling effectiveness in the lateral direction. Compound angle injection is employed to reduce those two problems. Compound angle injection increases the film cooling effectiveness and spreads more widely. However, there is still lift off at high blowing rates. Shaped film cooling hole is a possible means to reduce those two problems. Film cooling with the shaped hole is investigated in this study experimentally. Film cooling hole used in present study is a shaped hole with conically enlarged exit and Inlet-to-exit area ratio is 2.55. Naphthalene sublimation method has been employed to study the local heat/mass transfer coefficient and film cooling effectiveness for compound injection angles and various blowing rates around the shaped film cooling hole. Enlarged hole exit area reduces the momentum of the jet at the hole exit and prevents the penetration of injected jet into the mainstream effectively. Hence, higher and more uniform film cooling effectiveness values are obtained even at relatively high blowing rates and the film cooling jet spreads more widely with the shaped film cooling hole. And the injected jet protects the surface effectively at low blowing rates and spreads more widely with the compound angle injections than the axial injection.

2차원 막냉각의 적정 분사비와 분사각도의 조합에 관한 연구 (A Study on the Combination of Blowing Ratio and Injection Angle in 2-Dimensional Film Cooling)

  • 손창호;이근식;원영호;노석만;이종천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.553-558
    • /
    • 2001
  • To find the effective combinations of blowing ratio and injection angle for a straight slot film cooling, film cooling characteristics was investigated using both flow visualization experiment and numerical simulation. Injection angles from $15^{\circ}\;to\;50^{\circ}$ and blowing ratios from 0.2 to 3.0 were selected for the simulation. Comparison between experimental and numerical results shows a good agreement, for the case of the injection angle of $30^{\circ}$ and blowing ratio ranging from 0.55 to 2.0. Film cooling effectiveness was found to be an increasing function of blowing ratio. The effects of injection angle became prominent as the blowing ratio increases. An interesting phenomenon was found for the injection angle of $15^{\circ}$ : the lowest film cooling effectiveness for the blowing ratio smaller than 1.0, but the highest film cooling effectiveness for the blowing ratio greater than 2.0 within wide range of downstream region. There exist optimum injection angles corresponding to maximum film cooling effectiveness : injection angle of $25^{\circ}$ for the blowing ratio from 0.2 to 2.0, and injection angle of $15^{\circ}$ for the blowing ratio of 3.0. Present study provides a design combination among film cooling effectiveness, blowing ratio, and injection angle.

  • PDF

분사구 인접영역에서의 막냉각에 관한 3차원 해석 (3-Dimensional Analysis for Film Cooling adjacent Injection Hole)

  • 이용덕;이재헌
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2590-2600
    • /
    • 1993
  • The present paper describes numerical predictions for the film cooling effectiveness from a row of hole at various injection ratios and injection alngles.Numerical calculations were performed to investigate film cooling effectiveness and the characteristics of flow and temperature distributions in the region near the downstream of injection hole including the region of adverse pressure gradient. The elliptic 3-dimensional governing equations with variable thermal properties were solved by SIMPLE algorithm. The results showed that the presence of adverse pressure gradient in the region near the downstream of injection hole induces large temperature gradient. At injection angle of $35^{\circ}$ the average film cooling effectiveness was increased as increased of injection ratio up to 1.0. At injection angle of $90^{\circ}$ however, the average film cooling effectiveness was decreased from injection ratio larger than 0.4.