• Title/Summary/Keyword: Film heater

Search Result 189, Processing Time 0.027 seconds

Sensing properties of ZnO thin films fabricated by RF sputtering method for toxic gas (RF sputtering 방법을 이용하여 제작한 ZnO 박막의 유독성 가스에 대한 반응 특성 연구)

  • Hwang, Hyun-Suk;Kang, Hyun-Il;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.247-247
    • /
    • 2009
  • In this work, Ga-doped ZnO (GZO) thin films for toxic gas sensor application were deposited on low temperature co-fired ceramic (LTCC) substrates, by RF magnetron sputtering method. LTCC is one of promising materials for integration with heater, low cost production and high manufacturing yields than silicon substrate. The LTCC substrates with thickness of $400\;{\mu}m$ were fabricated by laminating 12 greentapes which consist of alumina and glass particle in an organic binder. The GZO thin films deposited on the substrates and were analyzed by X-ray diffraction method (XRD) and field emission scanning electron microscope (FESEM). The films are well crystallized in the hexagonal (wurzite) structure with increasing thickness. The fabricated sensors showed good sensitivity and fast response time to common types of toxic gases (NOx, COx).

  • PDF

Property of film heater using ZnO nanowires (ZnO 나노선을 이용한 면 발열 특성)

  • No, I.J.;Kim, S.H.;Lee, K.I.;Shin, P.K.;Cho, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1517-1518
    • /
    • 2011
  • 수열합성법을 이용하여 ZnO 나노선을 합성 하였다. 리사이클 공정을 통해 얻은 양질의 길고 수직한 나노선은 기판과 분리공정을 통해 분리된 후 유전체 층이 올라간 실리콘 웨이퍼 위에 스프레이 공정을 통해 고르게 분사 되었고 열처리 공정을 통해 면 발열 소자로서 제작 되었다. 소자 양단 전극에 전계를 인가한 후 열화상카메라를 통해 발열상태를 확인 하였다.

  • PDF

Micromachined MoO3 Gas Sensor with Low Power Consumption of 0.5 Watt

  • Jang, Gun-Eik;Wu Q.H.;Liu C.C.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.173-176
    • /
    • 2005
  • A new $MoO_3$ based microsensor with low power consumption was presented. Typical size of sensor was 5mm in width and 8mm in length. As a sensitive electrode, $MoO_3$ was successfully fabricated by IC technology on pyrex glass of $250{\mu}m$ in thickness. After annealing at $550^{\circ}C$ for 3hrs, the film was fully crystallized and demonstrated as pure $MoO_3$ structure. The grain size of $MoO_3$ was plat like and typical size was about $1{\mu}m$. Based on the results of sensitivity measurement, $MoO_3$ microsensor shows especially high selectivity to $H_2$ reducing gas atmosphere. The applied heater power was lower than 0.5 Watt.

RF Bias Effect of ITO Thin Films Reactively Sputtered on PET Substrates at Room Temperature

  • Kim, Hyun-Hoo;Shin, Sung-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.3
    • /
    • pp.122-125
    • /
    • 2004
  • ITO films were deposited on polyethylene terephthalate substrate by a dc reactive magnetron sputtering using rf bias without substrate heater and post-deposition thermal treatment. The dependency of rf substrate bias on plasma sputter processing was investigated to control energetic particles and improve ITO film properties. The substrate was applied negative rf bias voltage from 0 to -80 V. The composition of indium, tin, and oxygen atoms is strongly depended on the rf substrate bias. Oxygen deficiency is the highest at rf bias of -20 V. The electrical and optical properties of ITO films also are dominated obviously by negative rf bias.

Fabrication and Gas Sensing Characteristics of $MoO_3$ Thin Film Sensor ($MoO_3$ 박막센서 제조 및 가스감지특성)

  • Hwang, Jong-Taek;Jang, Gun-Eik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.826-829
    • /
    • 2002
  • $MoO_3$ thin films were deposited on electrode and heater screen-printed alumina substrates in en atmosphere by RF reactive sputtering. The deposition was performed at $300^{\circ}C$ with 350W of a forward power in an $Ar-O_2$ atmosphere. The working pressure was maintained at $3{\times}10^{-2}$mtorr and all deposited films were annealed at $500^{\circ}C$ for 5hours. The surface morphology of films was observed by using a SEM and crystalline phases were analyzed by XRD. The sensing properties were investigated in term of gas concentration under exposure of reducing gases such as $H_2$, $NH_3$ and CO.

  • PDF

Fabrication of ZnO thin film gas sensor for detecting $(CH_3)_3N$ gas ($(CH_3)_3N$ 가스 감지용 ZnO 박막 가스 센서의 제조)

  • 신현우;박현수;윤동현;홍형기;권철한;이규정
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.21-26
    • /
    • 1995
  • Highly sensitive and mechanically stable gas sensors have been fabricated using the microfabrication and micromaching techniques. The sensing material used to detect the offensive trimethylarnine ((CH$_{3}$)$_{3}$N) gas is 6 wt% $Al_{2}$O$_{3}$-doped, 1000.angs.-thick ZnO deposited by r. f. magnetron sputtering. The optimum operating temperature of the sensor is 350.deg.C and the corresponding heater power is about 85mW. Excellent thermal insulation is achieved by the use of a double-layer structure of 0.2.mu.m -thick silicon nitride and 1.4.mu.m-thick phosphosilicate glass(PSG) prepared by low pressure chemical vapor deposition(LPCVD) and atmospheric pressure chemical vapor deposition(APCVD), respectively. The sensors are mechanically stable enough to endure at least 43, 200 heat cycles between room temperature and 350.deg. C.

  • PDF

Electrical and Optical Properties of ITO Films Sputtered by RF -bias Voltage and In-Sn Alloy Target

  • Kim, Hyun-Hoo;Shin, Sung-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.4
    • /
    • pp.153-157
    • /
    • 2004
  • ITO thin films were deposited on PET and soda-lime glass substrates by a dc reactive magnetron sputtering of In-Sn alloy metal target without substrate heater and post-deposition thermal treatment. The dependency of rf-bias voltage and substrate power during deposition processing was investigated to control the electrical and optical properties of ITO films. The range of rf bias voltage is from 0 to -80 V and the substrate power is applied from 10 to 50 W. The minimum resistivity of ITO film is 5.4${\times}$10$^{-4}$ $\Omega$cm at 50 W power and rf-bias voltage of -20 V. The best transmittance of ITO films at 550 nm wavelength is 91 % in the substrate power of 30 W and rf-bias voltage of -80 V.

Numerical Study on Simultaneous Heat and Mass Transfer in a Falling Film of Water-Cooled Vertical Plate Absorber

  • Phan, Thanh-Tong;Song, Sung-Ho;Moon, Choon-Geun;Kim, Jae-Dol;Kim, Eun-Pil;Yoon, Jung-In
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.41-47
    • /
    • 2002
  • A model of simultaneous heat and mass transfer process in absorption of refrigerant vapor into a lithium bromide solution of water-cooled vertical plate absorber was developed. The model can predict temperature and concentration profiles as well as the absorption heat and mass fluxes, the total heat and mass transfer rates and the heat and mass transfer coefficients. Besides, the effect of operating condition on absorption mass flux has been investigated, with the result that the absorption mass flux is increased as the inlet cooling water temperature decreases, the system pressure increases and the inlet solution concentration increases. And among the effects of operating parameters on absorption mass flux, the effect of inlet solution concentration is dominant.

  • PDF

Development of I-Chuck for Oxide Etcher (Oxide Etcher 용 E-Chuck의 기술개발)

  • 조남인;남형진;박순규
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.361-365
    • /
    • 2003
  • A unipolar-type E-chuck was fabricated for the application of holding silicon wafers in the oxide etcher. For the fabrication of the unipolar ESC, core technologies such as coating of polyimide films and anodizing treatment of aluminum surface were developed. The polyimide films were prepared on thin coated copper substrates to minimize the plasma damage during the etch processing. Thin film heater technology was also developed for new type of E-chuck.

  • PDF

Silicon Nitride Cantilever Array Integrated with Si Heaters and Piezoelectric Sensors for Probe-based Data Storage

  • Nam Hyo-Jin;Kim Young-Sik;Lee Caroline Sunyong;Jin Won-Hyeog;Jang Seong-Soo;Cho Il-Joo;Bu Jong-Uk
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.73-77
    • /
    • 2005
  • In this paper, a new silicon nitride cantilever integrated with silicon heater and piezoelectric sensor has been firstly developed to improve the uniformity of the initial bending and the mechanical stability of the cantilever array for thermo-piezoelectric SPM(scanning probe microscopy) -based data storages. This nitride cantilever shows thickness uniformity less than $2\%$. Data bits of 40 nm in diameter were recorded on PMMA film. The sensitivity of the piezoelectric sensor was 0.615 fC/nm after poling the PZT layer. For high speed operation, 128${\times}$128 probe array was developed.

  • PDF