• 제목/요약/키워드: Filler Wire

검색결과 70건 처리시간 0.024초

Improvement of Degradation Characteristics in a Large, Racetrack-shaped 2G HTS Coil for MW-class Rotating Machines

  • Park, Heui Joo;Kim, Yeong-chun;Moon, Heejong;Park, Minwon;Yu, Inkeun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1166-1172
    • /
    • 2018
  • Degradation due to delamination occurs frequently in the high temperature superconductors (HTS) coil of rotating machines made with 2nd generation (2G) HTS wire, and the authors have observed other similar cases. Since an HTS field coil for a rotating machine is required to have stable current control and maintain a steady state, co-winding techniques for insulation material and epoxy resin for shape retention and heat transfer improvement are applied during coil fabrication. However, the most important limiting factor of this technique is delamination, which is known to be caused by the difference in thermal expansion between the epoxy resin and 2G HTS wire. Therefore, in this study, the experimental results of mixing the ratio of epoxy resin and alumina ($Al_2O3$) filler were applied to the fabrication of small and large test coils to solve the problem of degradation. For the verification of this scheme, eight prototypes of single pancake coils with different shapes were fabricated. They showed good results. The energization and operation maintenance tests of the stacked coils were carried out under liquid neon conditions similar to the operation temperature of an MW-class rotating machine. In conclusion, it was confirmed that the alumina powder mixed with epoxy resin in an appropriate ratio is an effective solution of de-lamination problem of 2G HTS coil.

용접흄 충 금속함량 변화에 관한 연구 (A Study on the Content Variation of Metals in Welding Fumes)

  • 윤충식;박동욱;박두용
    • 한국환경보건학회지
    • /
    • 제28권2호
    • /
    • pp.117-129
    • /
    • 2002
  • Concentration of welding fumes and their components is known to be hazardous to welder and adjacent worker. To determine the generation rates of metals in fumes, $CO_2$ flux cored arc welding on stainless steel was performed in well designed fume collection chamber. Variables were different products of flux cored wire(2 domestic products and 4 foreign products) and input energy(low-, optimal- , high input energy). Mass of welding fumes was determined by gravimetric method(NIOSH 0500 method), and 17 metals were analysed by inductively coupled plasm-atomic emission spectroscopy(NIOSH 7300 method). Flux cored wire tube and flux were analysed by scanning electron microscopy to determine their metal composition. 17 metals were classified by their generation rates. Generation rates of iron, manganese, potassium and sodium were all above 50mg/min at optimal input energy level. Generation rates of chromium and amorphous silica were 25~50mg/min. At 1~25mg/min level, nickel, titanium, molybdenum, and aluminum were included. Copper, zinc, calcium, lead, magnesium, lithium, and cobalt were generated below 1 mg/min. Generation rates of metal components in fumes were influenced by input energy, types of flux cored wire. Flux cored wire was consisted of outer shell tube and inner flux. Iron, chromium, and nickel were the major components of outer tube. Flux contained iron, chromium, nickel, potassium, sodium, silica, and manganese. The use of flux cored wire can increase the hazards by increasing the amounts of fumes formed relative to that of solid wire. The reason might be the direct transfer of elements from the flux, since the flux is fine power. Ratio of metals to the fume of flux cored wire was lower than that of solid wire because non-metal components of flux were transferred. Total metal content of fumes in flux cored arc welding was 47.4(24.3~57.2) percent that is much lower than that of solid wire, 75.9 percent. We found that generation rates of iron, manganese, chromium and nickel, all well known to cause work related disease to welder, increased more rapidly with increasing input energy than those of fumes. To reduce worker exposure to fumes and hazardous component at source, further research is needed to develop new welding filler materials that decrease both the amount of fumes and hazardous components.

API X-100의 레이저-아크 하이브리드 용접성에 미치는 용접와이어의 영향 (The Effects of Welding Wires on the Weldabilities of API X-100 with Laser-Arc Hybrid Welidng)

  • 김성욱;이목영
    • Journal of Welding and Joining
    • /
    • 제32권5호
    • /
    • pp.7-12
    • /
    • 2014
  • In this study, API-X100 steel pipes were welded with various kinds of welding wires in the laser-arc hybrid welding process. 10kW fiber laser source was combined to MIG arc welding process. API X-100 steel of base metal was of 16.9mm thickness, and butt welding applied. After welding, full penetration weld was acquired by 1-pass welding. A root porosity and the lack of fusion was observed in some welding conditions. By the mixing the melted wire, acicular ferrite, polygonal ferrite, pro-eutectoid, aligned side plate, and bainite structures were observed at the weld metal. From the observation of hybrid weld, unmixed zone had more Ni and Cr. The unmixed zone was a 1/3 area of the weld metal. As the mechanical test of the hybrid welding, tensile test and impact test applied. From the tensile test, all of the welding except SM70S was fractured at the base metal. The result of the impact test at -30 degree C led 60J~320J of the absorbed energy. The result of the low-absorbed energy might be from the coarse equiaxed structures of the weld metal.

개선된 회전형 레올로지 측정법을 이용한 박형 반도체 패키지 내에서의 3차원 몰드 유동현상 연구 (Full Three Dimensional Rheokinetic Modeling of Mold Flow in Thin Package using Modified Parallel Plate Rheometry)

  • 이민우;유민;유희열
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2003년도 기술심포지움 논문집
    • /
    • pp.17-20
    • /
    • 2003
  • The EMC's rheological effects on molding process are evaluated in this study. When considering mold processing for IC packages, the major concerning items in current studies are incomplete fill, severe wire sweeping and paddle shifts etc. To simulate EMC's fast curing rheokinetics with 3D mold flow behavior, one should select appropriate rheometry which characterize each EMC's rheological motion and finding empirical parameters for numerical analysis current studies present the new rheometry with parallel plate rheometry for reactive rheokinetic experiments, the experiment and numerical analysis is done with the commercial higher filler loaded EMC for the case of Thin Quad Plant Packages (TQFP) with package thickness below 1.0 mm. The experimental results and simulation results based on new rheometry matches well in point of the prediction of wire sweep, filling behavior of melt front advancement and void trapping position.

  • PDF

TIG클래딩 공정에 대한 품질 모니터링기법의 개발 (Development of Welding Quality Monitoring Method for TIG Cladding)

  • 조상명;박정현;손민수
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.90-95
    • /
    • 2013
  • Pipe inside clad welding is mainly used to the flow pipe of sub-sea or chemical plant. For the inside clad welding to the medium pipe with the diameter of about 12", TIG welding is frequently applied with filler metal. In this case, the clad welding has the very broad weld area over $10m^2$. And, the non-destructive test (NDT) such as ultrasonic test (UT) or radiographic testing (RT) should be conducted on the broad weld area, and it costs very high due to the time-consuming work. Therefore, the present study investigated the variation of arc voltage to develop the in-line quality monitoring system for the pipe inside TIG cladding. The 4 experimental parameters (current, arc length, wire feed position, and shield gas flow rate) varied to observe the change of arc voltage and to establish the model for the monitoring. The arc voltage was decreased when the wire was fed to the backward eccentric position(over 2mm), and the shield gas flow rate was insufficient under 10L/min. In the case of the backward eccentric position over 2mm, the bead appearance was not good and the dilution ratio was increased due to deep penetration. When the shield gas flow rate was lower than 10L/min, the bead surface was oxidized.

다중벽 카본나노튜브가 보강된 고분자 나노복합체의 기계적, 열적, 전기적 특성 (Mechanical, Thermal and Electrical Properties of Polymer Nanocomposites Reinforced with Multiwalled Carbon Nanotubes)

  • 국정호;허몽영;양훈;신동훈;박대희;나창운
    • 폴리머
    • /
    • 제31권5호
    • /
    • pp.422-427
    • /
    • 2007
  • 반도전층은 전력케이블의 도선과 고분자 절연층 사이에 위치하고 전기저항이 약 ${\sim}10^2{\Omega}cm$인 얇은 고분자층이다. 현재 일반적으로 사용되는 반도전층 소재는 카본블랙이 30 wt% 이상 보강된 고분자 복합체이다. 본 연구에서는 카본나노튜브(CNT)가 보강된 새로운 반도전층 재료를 제시하였다. 여러 가지 고분자 형태와 이중충전제 시스템을 적용하여 용액혼합 및 침전법으로 CNT가 보강된 고분자 나노복합체를 제조하였다. 기계적, 열적, 전기적 특성을 고분자 형태와 CNT와 카본블랙의 첨가비를 달리한 이중충전제 시스템의 함수로 조사하였다. 복합체의 전기저항특성은 고분자 매트릭스의 결정화도와 밀접한 관련이 있었다. 즉, 결정화도가 감소함에 따라 일정한 수준의 결정화도까지 전기저항이 선형적으로 감소하였고, 그 이하에서는 일정한 값을 나타내었다. 이중충전제 시스템 역시 전기적 저항에 영향을 미쳤다. CNT만으로 보강된 나노복합체가 가장 낮은 전기적 저항특성을 보였다. 소량의 카본블랙이 첨가되면 결정화도가 급격히 증가하고 결국 전기저항의 증가를 초래하였다.

경량 차체를 위한 마그네슘 합금 압연판재의 레이저 용접 (Laser welding of Magnesium alloy sheet for light car body)

  • 이목영;장웅성;윤병현
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.71-73
    • /
    • 2006
  • Magnesium alloys are becoming important material for light weight car body, due to their low specific density but high specific strength. However they have a poor weldability, caused high oxidization tendency and low vapor temperature. In this study, the laser welding performance of magnesium alloys was investigated for automobile application. The materials were rolled magnesium alloy sheet contains 3%Al and 1%Zn. To evaluate the weldability, we examined the appearance of welding bead. The mechanical property was measured for welded specimen by tensile test. And formability was checked with the Erichsen tester. For the results, the performance of weld in laser welding was enough for press forming such as car body. But it was recommended to use filler wire for reduce the under fill.

  • PDF

원전 증기발생기 레이저 클래딩 보수부위 잔류응력 해석 (Residual Stress Analysis of Laser Cladding Repair for Nuclear Steam Generator Damaged Tubes)

  • 한원진;이상철;이선호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.56-60
    • /
    • 2008
  • Laser cladding technology was studied as a method for upgrading the present repair procedures of damaged tubes in a nuclear steam generator and Doosan subsequently developed and designed a new Laser Cladding Repair System. One of the important features of this newly developed Laser Cladding Repair System is that molten metal can be deposited on damaged tube surfaces using a laser beam and filler wire without the need to install sleeves inside the tube. Laser cladding qualification tests on the steam generator tube material, Alloy 600, were performed according to ASME Section IX. Residual stress analyses were performed for weld metal and heat affected zone of as-welded and PWHT with SYSWELD software.

  • PDF

Ag계 금속필러를 이용한 다이아몬드와 극세선의 브레이징 접합부의 거동연구 (Microstructure and Mechanical Interfacial Properties of Diamond in Ag-based Filler Metal for mini Wire by Vacuum Brazing)

  • 채나현;이장훈;임철호;박성원;이지환;송민석
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2007년 추계학술발표대회 개요집
    • /
    • pp.251-253
    • /
    • 2007
  • 현재 다이아몬드 공구에서 극세선에 브레이징 공정을 이용하여 다이아몬드를 접합하는 기술은 국내외 적으로 전무한 상태이다. 이 연구는 금속 와이어에 다이아몬드를 브레이징을 실시하여 최적의 와이어 브레이징 공정법을 개발 하는데 있다. 다이아몬드와 금속필러메탈 접합 계면에서의 금속성분과 탄화물의 거동을 분석하며, 브레이징에 따른 와이어의 물성 변화를 관찰하였다. 금속필러로는 Ag-Cu-5Ti(wt.%)을 사용하였으며, 와이어는 스테인리스를 이용하였다. 브레이징 공정은 진공 접합 장치를 이용하여 $800{\sim}1000^{\circ}C$에서 유지시간 $5{\sim}30$분로 실시하였다. 브레이징된 다이아몬드는 $900{\sim}950$도, 유지시간 10분 사이에서 각각 건전한 계면과 표면을 얻을 수 있었으며, 계면에서 Ti-rich상과 화합물이 확인되었다. 또한 열처리 따른 와이어의 최적의 건전한 상태를 고찰 하였다. 다이아몬드와 Ag계 브레이징 필러의 계면에서의 미세조직 및 화학반응의 메커니즘은 SEM, EPMA, XRD를 이용하여 분석하였다.

  • PDF

Conducting Properties of Polypyrrole Coated Imogolite

  • Lee, Yun-Ha;Kim, Bum-Joong;Yi, Whi-kun;Takahara, Atsushi;Sohn, Dae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권11호
    • /
    • pp.1815-1818
    • /
    • 2006
  • Imogolite which has chemical composition, $(HO)_3Al_2O_3SiOH$, was synthesized with orthosilicate acid and aluminium chloride at low pH solution. It has extremely large aspect ratio with an external diameter of 2nm and the length of a few micrometers. The high aspect ratio of the imogolite could make the material as the filler for the high strength fiber and as the wire for the electronic applications. Here, Imogolite that derives considerable microporosity from a nanometer-sized tubular structure has been modified with a conducting polymer, polypyrrole. Its bonding and wiring structure were confirmed by IR and TEM. The measured conductivity after modification with polypyrrole increased with polypyrrole thickness at various voltage conditions.